摘要:
A structurally colored pigment is described that contains a plurality of photonic crystal particles dispersed in a medium, where each photonic crystal particles contains a plurality of spectrally selective absorbing components dispersed within the photonic crystal particle. In certain embodiments, each photonic crystal particle has a predetermined minimum number of repeat units of the photonic crystal structure. The structurally colored material provides improved reflectance, long-term stability, and control of the desired optical effects. The fabrication techniques described herein also provide high throughput and high yield allowing use in wide ranging applications from cosmetics, paints, signs, sensors, to packaging material.
摘要:
The present invention relates to photonic structures and methods of controlling the optical properties and structural stability of photonic structures by using ionic species. The photonic structure is less crystalline when increasing concentrations of the ionic species are used. In certain embodiments, the ionic species is a transition metal salt. The method allows for production of single crystalline, polycrystalline, or glass-like photonic structures. The method allows for control of the optical properties and structural stability of photonic structures. The resulting photonic structures are useful in a wide range of applications, including sensors, photoactive catalysts, light emitters, and random lasing.
摘要:
A method for mechanical stimulation of cells includes providing a substrate comprising a plurality of microactuators embedded in an environmentally responsive hydrogel polymer layer disposed on a region of the surface; adhering at least one cell to the substrate; and exposing the environmentally responsive hydrogel polymer layer to a stimulus, the stimulus changing a volume of the environmentally responsive hydrogel polymer layer from a first volume to a second volume and thereby moving the microactuators from a first position to a second position, wherein the movement of the microactuators provides localized mechanical force directly to cells on the substrate.
摘要:
Aspects of the present application provides for enhanced catalytic materials, which can feature multiple functional and/or catalytic species, and methods of their formation. The materials can include catalytic nanoparticles (NPs) partially embedded within a supporting matrix. Treatment of the material, e.g., thermal, optical, microwave, plasma, and/or chemical treatment, can lead to the formation of functionally, e.g., catalytic or co-catalytic, relevant chemical and structural/morphological species or features at the NP-matrix, NP-pore, and matrix-pore interfaces. The treated material is characterized by enhanced properties, e.g., greater mechanical stability.
摘要:
Methods for forming an interconnected network of solid material and pores, with metal residing only at the air/solid interface of the interconnected network structure are described. In certain embodiments, nanoparticle decorated sacrificial particles can be used as sacrificial templates for the formation of a porous structure having an interconnected network of solid material and interconnected network of pores. The nanoparticles reside predominantly at the air/solid interface and allow further growth and accessibility of the nanoparticles at defined positions of the interconnected structure. SEM and TEM measurements reveal the formation of 3D interconnected porous structures with nanoparticles residing predominantly at the air/solid interface of the interconnected structure.
摘要:
A co-assembly method for synthesizing inverse photonic structures is described. The method includes combining an onium compound with a sol-gel precursor to form metal oxide (MO) nanocrystals, where each MO nanocrystal has crystalline and amorphous content. The MO nanocrystals are combined with templating particles to form a suspension. A solvent is evaporated from the suspension to form an intermediate or compound product, which then undergoes calcination to produce an inverse structure.
摘要:
A pigment comprising a plurality of photonic crystal particles dispersed in a medium, each photonic crystal particles containing a plurality of spectrally selective absorbing components dispersed within each photonic crystal particle that selectively absorb electromagnetic radiation without substantially absorbing electromagnetic radiation near a resonant wavelength of each photonic crystal particle, wherein each photonic crystal particle has a predetermined minimum number of repeat units of a photonic crystal structure, wherein the predetermined minimum number of repeat units is related to the resonant wavelength, the full-width at half maximum of the resonant wavelength, and the refractive index contrast in the photonic crystal.
摘要:
A co-assembly method for synthesizing inverse photonic structures is described. The method includes combining an onium compound with a sol-gel precursor to form metal oxide (MO) nanocrystals, where each MO nanocrystal has crystalline and amorphous content. The MO nanocrystals are combined with templating particles to form a suspension. A solvent is evaporated from the suspension to form an intermediate or compound product, which then undergoes calcination to produce an inverse structure.
摘要:
Methods for forming an interconnected network of solid material and pores, with metal residing only at the air/solid interface of the interconnected network structure are described. In certain embodiments, nanoparticle decorated sacrificial particles can be used as sacrificial templates for the formation of a porous structure having an interconnected network of solid material and interconnected network of pores. The nanoparticles reside predominantly at the air/solid interface and allow further growth and accessibility of the nanoparticles at defined positions of the interconnected structure. SEM and TEM measurements reveal the formation of 3D interconnected porous structures with nanoparticles residing predominantly at the air/solid interface of the interconnected structure.