Abstract:
The present invention generally relates to a combination of molecular barcoding and emulsion-based microfluidics to isolate, lyse, barcode, and prepare nucleic acids from individual cells in a high-throughput manner.
Abstract:
The present invention generally relates to a controlled fluidic device to develop spatially complex environments to enhance the rate of evolution in cell populations. The method further provides an enhanced understanding in the emergence, for example, drug resistance during cancer chemotherapy.
Abstract:
A structurally colored pigment is described that contains a plurality of photonic crystal particles dispersed in a medium, where each photonic crystal particles contains a plurality of spectrally selective absorbing components dispersed within the photonic crystal particle. In certain embodiments, each photonic crystal particle has a predetermined minimum number of repeat units of the photonic crystal structure. The structurally colored material provides improved reflectance, long-term stability, and control of the desired optical effects. The fabrication techniques described herein also provide high throughput and high yield allowing use in wide ranging applications from cosmetics, paints, signs, sensors, to packaging material.
Abstract:
A pigment comprising a plurality of photonic crystal particles dispersed in a medium, each photonic crystal particles containing a plurality of spectrally selective absorbing components dispersed within each photonic crystal particle that selectively absorb electromagnetic radiation without substantially absorbing electromagnetic radiation near a resonant wavelength of each photonic crystal particle, wherein each photonic crystal particle has a predetermined minimum number of repeat units of a photonic crystal structure, wherein the predetermined minimum number of repeat units is related to the resonant wavelength, the full-width at half maximum of the resonant wavelength, and the refractive index contrast in the photonic crystal.
Abstract:
The present invention generally relates to a combination of molecular barcoding and emulsion-based microfluidics to isolate, lyse, barcode, and prepare nucleic acids from individual cells in a high-throughput manner.
Abstract:
Embodiments of various aspects described herein relate to methods and compositions for injecting and/or delivering high viscosity and/or high concentration active agent solutions. In some embodiments, the methods and compositions described herein can be used for subcutaneous administration.