Abstract:
Multi-channel audio alignment schemes are disclosed. One aspect of the present disclosure provides for accumulation of audio samples across multiple related audio channels at an audio source. Related audio channels indicate their interrelatedness, and when all the related audio channels have data to transmit, the source releases the data onto the time slots of the Serial Low-power Inter-chip Media Bus (SLIMbus), such that the related audio channels are within a given segment window of the time slot. This accumulation is repeated at the boundary of every segment window. Similarly, accumulation may be performed at the audio sink. Components within the audio sink may only read received data if status signals from all related sinks indicate that predefined thresholds have been reached. By providing such accumulation options, audio fidelity is maintained across multiple audio data channels.
Abstract:
A method for classifying radio frequency front-end (RFFE) devices. The method includes enumerating a radio frequency front-end (RFFE) slave device according to at least one classifier bit within the RFFE slave device. The method also includes adjusting an RFFE control interface of an RFFE master device according to slave device configuration information determined from the at least one classifier bit within the RFFE slave device.
Abstract:
A method includes sending data from a first serial low-power inter-chip media bus (SLIMbus) component to a second SLIMbus component. The method further includes sending the data via at least a first SLIMbus data line of a plurality of SLIMbus data lines.
Abstract:
A method, an apparatus, and a computer program product for communication within a wireless terminal. The method can be implemented using dedicated logic and managed and controlled by state machines and/or sequencers. Data received or provided in a memory of a first integrated circuit of a terminal is encoded and transmitted in a data packet to a second integrated circuit. A header identifying the data type and providing a destination is included in the data packet. The destination may be identified as a memory address memory of the second integrated circuit that is mapped to a corresponding memory address of the first integrated circuit at which the data is received. In an aspect, the apparatus receives a header, detects an error in the received header, determines a failure to identify a packet boundary when the error is detected, and performs a search operation to identify the packet boundary.
Abstract:
A method includes sending data from a first serial low-power inter-chip media bus (SLIMbus) component to a second SLIMbus component. The method further includes sending the data via at least a first SLIMbus data line of a plurality of SLIMbus data lines.
Abstract:
Multi-channel audio alignment schemes are disclosed. One aspect of the present disclosure provides for accumulation of audio samples across multiple related audio channels at an audio source. Related audio channels indicate their interrelatedness, and when all the related audio channels have data to transmit, the source releases the data onto the time slots of the Serial Low-power Inter-chip Media Bus (SLIMbus), such that the related audio channels are within a given segment window of the time slot. This accumulation is repeated at the boundary of every segment window. Similarly, accumulation may be performed at the audio sink. Components within the audio sink may only read received data if status signals from all related sinks indicate that predefined thresholds have been reached. By providing such accumulation options, audio fidelity is maintained across multiple audio data channels.