Abstract:
Methods, devices, and computer program products for antenna searching with antenna selection are disclosed. In one aspect, an apparatus operable in a wireless communication system includes a first receiver, a second receiver, and a processor. The first receiver receives a first signal including pilot signals from a first antenna. The second receiver receives a second signal including pilot signals from a second antenna. The processor, while a receive diversity is enabled, demodulates the first and second signals, determines whether a first condition is satisfied, and, in response to determining that the first condition is satisfied, searches for pilot signals via the second receiver and not the first receiver. The first condition is satisfied when a signal strength of the first signal does not exceed a first threshold and a signal strength of the second signal exceeds a second threshold.
Abstract:
The disclosure discloses enabling/disabling receive diversity, including determining the UE in a receive diversity enabled state; comparing a first and second receive chain filtered channel chip energy to interference density ratio to an EcI0 threshold, wherein the first and second receive chain filtered channel chip energy to interference density ratios are based on at least two power measurements obtained in the receive diversity enabled state; comparing a first receive chain measured number of Ec/I0 samples below EcI0_LCR_thrshld to a non-receive diversity threshold, wherein the first receive chain measured number of Ec/I0 samples is based on the first receive chain filtered channel chip energy to interference density ratio; and comparing a second receive chain measured number of Ec/I0 samples below EcI0_LCR_thrshld to the non-receive diversity threshold, wherein the second receive chain measured number of Ec/I0 samples is based on the second receive chain filtered channel chip energy to interference density ratio.
Abstract:
Methods, devices, and computer program products for antenna searching with antenna selection are disclosed. In one aspect, an apparatus operable in a wireless communication system includes a first receiver, a second receiver, and a processor. The first receiver receives a first signal including pilot signals from a first antenna. The second receiver receives a second signal including pilot signals from a second antenna. The processor, while a receive diversity is enabled, demodulates the first and second signals, determines whether a first condition is satisfied, and, in response to determining that the first condition is satisfied, searches for pilot signals via the second receiver and not the first receiver. The first condition is satisfied when a signal strength of the first signal does not exceed a first threshold and a signal strength of the second signal exceeds a second threshold.
Abstract:
A method for providing variable padding for tune away on a mobile communication device includes: performing a first tune away to a first radio access technology (RAT) on a first subscription; determining a status of a second RAT on a second subscription based on activities performed by the second RAT during a time period prior to the first tune away; determining padding for a second tune away to the first RAT based on the determined status of the second RAT; and causing the first RAT on the first subscription to wake up before a next page slot boundary by an amount of time equal to the padding.
Abstract:
Auto-recovery from RF signal acquisition failure may be provided in a portable computing device. A field-calculated frequency-temperature (“FT”) curve is used to apply temperature compensation to a crystal oscillator associated with RF transceiver circuity of the device. In response to acquisition failure, it may be determined whether a deviation between the field-calculated FT curve and a factory-set FT curve exceeds threshold criteria. In response to acquisition success, the field-calculated FT curve may be refined based on frequency error information. However, in response to acquisition failure and a determination that the deviation exceeds the threshold criteria, information defining the field-calculated FT curve may be replaced with information defining the factory-set FT curve.
Abstract:
Techniques for determining if it is safe for a mobile device to transition directly from a traffic session to a paging mode and for avoiding network re-synchronization procedures in stationary M2M devices are disclosed. It may be safe for direct transition if before-call and in-call network parameters correspond. If safe, the mobile device may transition from the traffic session directly to the paging mode to begin immediately monitoring the paging channel. In stationary M2M devices, paging information is stored before the traffic session and, once the traffic session is complete, the M2M device may be configured to receive paging messaging based on the stored paging information. The M2M device may also store system access information and confirm the validity of the information before returning to the sleep state. The stationary M2M device avoids network re-synchronization procedures. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Techniques for determining if it is safe for a mobile device to transition directly from a traffic session to a paging mode and for avoiding network re-synchronization procedures in stationary M2M devices are disclosed. It may be safe for direct transition if before-call and in-call network parameters correspond. If safe, the mobile device may transition from the traffic session directly to the paging mode to begin immediately monitoring the paging channel. In stationary M2M devices, paging information is stored before the traffic session and, once the traffic session is complete, the M2M device may be configured to receive paging messaging based on the stored paging information. The M2M device may also store system access information and confirm the validity of the information before returning to the sleep state. The stationary M2M device avoids network re-synchronization procedures. Other aspects, embodiments, and features are also claimed and described.
Abstract:
The disclosure discloses enabling/disabling receive diversity, including determining the UE in a receive diversity enabled state; comparing a first and second receive chain filtered channel chip energy to interference density ratio to an EcI0 threshold, wherein the first and second receive chain filtered channel chip energy to interference density ratios are based on at least two power measurements obtained in the receive diversity enabled state; comparing a first receive chain measured number of Ec/I0 samples below EcI0_LCR_thrshld to a non-receive diversity threshold, wherein the first receive chain measured number of Ec/I0 samples is based on the first receive chain filtered channel chip energy to interference density ratio; and comparing a second receive chain measured number of Ec/I0 samples below EcI0_LCR_thrshld to the non-receive diversity threshold, wherein the second receive chain measured number of Ec/I0 samples is based on the second receive chain filtered channel chip energy to interference density ratio.