Abstract:
Methods and apparatus for improved utilization of air link resources are discussed in wireless communications systems employing multi-sector base stations and wireless terminals with multiple antennas. Timing synchronization is maintained across the base station sectors, and the same set of tones are used in adjacent sectors. In a sector boundary region, which is typically a high interference region, a wireless terminal is set to a sector pair state and operated in a MIMO mode of operation, communicating with two adjacent base station antenna faces of the same base station concurrently, the two different adjacent base station antenna faces corresponding to different adjacent sectors. Thus, typically high interference sector boundary regions, are converted into high capacity regions by having the sectors coordinated and utilizing MIMO techniques.
Abstract:
Methods and apparatus for improved utilization of air link resources are discussed in wireless communications systems employing multi-sector base stations and wireless terminals with multiple antennas. Timing synchronization is maintained across the base station sectors, and the same set of tones are used in adjacent sectors. In a sector boundary region, which is typically a high interference region, a wireless terminal is set to a sector pair state and operated in a MIMO mode of operation, communicating with two adjacent base station antenna faces of the same base station concurrently, the two different adjacent base station antenna faces corresponding to different adjacent sectors. Thus, typically high interference sector boundary regions, are converted into high capacity regions by having the sectors coordinated and utilizing MIMO techniques.
Abstract:
Wireless terminals and base stations support multiple modes of dedicated control channel operation wherein wireless terminals are allocated different amounts of dedicated uplink resources for reporting control information. A set of dedicated control channel segments is utilized by a wireless terminal to communicate uplink control information reports to its serving base station attachment point. Full tone and split-tone modes of dedicated control channel operation are supported. In full tone mode, a single wireless terminal is allocated each of the dedicated control channel segments associated with a single logical tone. In split tone mode, dedicated control channel segments associated with a single logical tone are allocated between different wireless terminals, with each of the multiple wireless terminals receiving a different non-overlapping subset of the dedicated control channel segments. Logical dedicated control channel tones can be dynamically reallocated for full-tone mode use or split tone mode use.
Abstract:
Methods and apparatus for improved utilization of air link resources are discussed in wireless communications systems employing multi-sector base stations and wireless terminals with multiple antennas. Timing synchronization is maintained across the base station sectors, and the same set of tones are used in adjacent sectors. In a sector boundary region, which is typically a high interference region, a wireless terminal is set to a sector pair state and operated in a MIMO mode of operation, communicating with two adjacent base station antenna faces of the same base station concurrently, the two different adjacent base station antenna faces corresponding to different adjacent sectors. Thus, typically high interference sector boundary regions, are converted into high capacity regions by having the sectors coordinated and utilizing MIMO techniques.
Abstract:
In a first mode of dedicated control channel (DCCH) operation, a wireless terminal is allocated more segments than in a second mode. The wireless terminal uses different information bit to modulation symbol mapping in the different modes. On a per DCCH segment basis, the same number of modulation symbols are communicated in either mode but more information bits are conveyed in the second mode. Information bits for a DCCH segment are partitioned into two subsets. The two subsets are used to generate another set, each of the two subsets and the another set are input to the same mapping function to generate three equal size sets of modulation symbols which are transmitted via the DCCH segment. Uplink tone hopping is used such that one of the equal size sets of modulation symbols for the DCCH segment uses the same tone but a different set uses a different tone.
Abstract:
Methods and apparatus for improved utilization of air link resources are discussed in wireless communications systems employing multi-sector base stations and wireless terminals with multiple antennas. Timing synchronization is maintained across the base station sectors, and the same set of tones are used in adjacent sectors. In a sector boundary region, which is typically a high interference region, a wireless terminal is set to a sector pair state and operated in a MIMO mode of operation, communicating with two adjacent base station antenna faces of the same base station concurrently, the two different adjacent base station antenna faces corresponding to different adjacent sectors. Thus, typically high interference sector boundary regions, are converted into high capacity regions by having the sectors coordinated and utilizing MIMO techniques.
Abstract:
In a first mode of dedicated control channel (DCCH) operation, a wireless terminal is allocated more segments than in a second mode. The wireless terminal uses different information bit to modulation symbol mapping in the different modes. On a per DCCH segment basis, the same number of modulation symbols are communicated in either mode but more information bits are conveyed in the second mode. Information bits for a DCCH segment are partitioned into two subsets. The two subsets are used to generate another set, each of the two subsets and the another set are input to the same mapping function to generate three equal size sets of modulation symbols which are transmitted via the DCCH segment. Uplink tone hopping is used such that one of the equal size sets of modulation symbols for the DCCH segment uses the same tone but a different set uses a different tone.
Abstract:
Systems and methodologies are described that facilitate supporting multiple connections associated with a wireless terminal. Notifications may be provided to a primary base station upon establishment and/or removal of connections between the wireless terminal and secondary base station(s). Additionally, the multiple connections may be evaluated and a preferred connection from the set of multiple connections may be utilized to transfer data to the wireless terminal over a downlink connection.
Abstract:
Systems and methodologies are described that facilitate supporting multiple connections associated with a wireless terminal. Notifications may be provided to a primary base station upon establishment and/or removal of connections between the wireless terminal and secondary base station(s). Additionally, the multiple connections may be evaluated and a preferred connection from the set of multiple connections may be utilized to transfer data to the wireless terminal over a downlink connection.