摘要:
A memory device is provided including circuitry for correcting an over-erased memory cell in the memory device. The memory device may include a substrate. A control gate and a floating gate may be formed over the substrate. The memory device may include a source region and a drain region. A first resistive element may be coupled between the source region and the control gate.
摘要:
Methods of erasing flash memory cells are provided that improve erase cycling speed and reliability. One embodiment comprises interactively applying a stepped or ramped drain voltage pattern to a drain of the memory cells and a pulsed gate voltage pattern to a gate of the memory cells for a predetermined number of gate pulses or until all the memory cells are erased. In another embodiment, an erase bias circuit is provided for erasing a sector of flash memory cells, the circuit comprising row and column decoders that selects wordline rows and columns of cells, respectively, a supply bias arrangement that provides source and drain supply voltages for the sector, and a patterned pulse bias arrangement configured to provide a pulsed gate voltage pattern to gates of the cells selected by the row decoder and a drain voltage pattern to the drains of the cells selected by the column decoder.
摘要:
A method of erasing a block of flash memory cells by applying a ramped gate erase voltage to the block of memory cells. When an erase verify of the block of memory cells indicates that erasure has not been successfully completed another erase voltage with a greater absolute value than the initial erase voltage can be applied to the block of memory cells until erasure is complete.
摘要:
Methods of erasing flash memory cells are provided that improve erase cycling speed and reliability. One embodiment comprises interactively applying a stepped or ramped drain voltage pattern to a drain of the memory cells and a pulsed gate voltage pattern to a gate of the memory cells for a predetermined number of gate pulses or until all the memory cells are erased. In another embodiment, an erase bias circuit is provided for erasing a sector of flash memory cells, the circuit comprising row and column decoders that selects wordline rows and columns of cells, respectively, a supply bias arrangement that provides source and drain supply voltages for the sector, and a patterned pulse bias arrangement configured to provide a pulsed gate voltage pattern to gates of the cells selected by the row decoder and a drain voltage pattern to the drains of the cells selected by the column decoder.
摘要:
A method of erasing a block of flash memory cells by applying a ramped gate erase voltage to the block of memory cells. When an erase verify of the block of memory cells indicates that erasure has not been successfully completed another erase voltage with a greater absolute value than the initial erase voltage can be applied to the block of memory cells until erasure is complete.
摘要:
One embodiment of the present invention relates to a memory cell. The memory cell comprises a substrate and a stacked gate structure disposed on the substrate, wherein the stacked gate structure comprises a charge trapping dielectric layer that is adapted to store at least one bit of data. The memory cell further includes a source and drain in the substrate, wherein the source and drain are disposed at opposite sides of the stacked gate structure. A barrier region is disposed substantially beneath the source or the drain and comprises an inert species. Other embodiments are also disclosed.
摘要:
One embodiment of the present invention relates to a memory cell. The memory cell comprises a substrate and a stacked gate structure disposed on the substrate, wherein the stacked gate structure comprises a charge trapping dielectric layer that is adapted to store at least one bit of data. The memory cell further includes a source and drain in the substrate, wherein the source and drain are disposed at opposite sides of the stacked gate structure. A barrier region is disposed substantially beneath the source or the drain and comprises an inert species. Other embodiments are also disclosed.
摘要:
A process is described for fabricating an integrated circuit memory in a semiconductor substrate. In the substrate, a first well is formed by introduction of dopant opposite to conductivity of the substrate. Within the first well a second well is formed of conductivity type matching the substrate. The memory cells are fabricated in the second well and have source and drain regions opposite the conductivity type substrate. Each of the first and second wells also includes a region of corresponding conductivity type to enable separate electrical connections to be made to each of the wells.
摘要:
Novel fabrication methods implement the use of dummy tiles to avoid the effects of in-line charging, ESD events, and such charge effects in the formation of a memory device region region. One method involves forming at least a portion of a memory core array upon a semiconductor substrate that involves forming STI structures in the substrate substantially surrounding a memory device region region within the array. An oxide layer is formed over the substrate in the memory device region region and over the STI's, wherein an inner section of the oxide layer formed over the memory device region region is thicker than an outer section of the oxide layer formed over the STI's. A first polysilicon layer is then formed over the inner and outer sections comprising one or more dummy tiles formed over one or more outer sections and electrically connected to at least one inner section.
摘要:
The present invention pertains to implementing a dual poly process in forming a transistor based memory device. The process allows a first polysilicon layer to be selectively doped subsequent to deposition of the second polysilicon layer. The doping increases the conductivity of the first polysilicon layer which can achieve a more robust charging protection for multi-bit core array and a more uniform distribution of charge.