Abstract:
A method of forming an electronic device including forming a first trench in a workpiece including a substrate, the first trench having side walls and a bottom surface extending for a width between the side walls and forming a charge-storage layer along the side walls and bottom surface of the first trench. The method further includes implanting ions within the substrate underlying the bottom surface of the first trench to form an implant region and annealing the implant region, wherein after annealing, the implant region extends the width of the bottom surface and along a portion of the side walls.
Abstract:
Disclosed are apparatus and devices for programming and operating a programmable memory array portion coupled with a leakage reduction circuit. At the leakage reduction circuit, a frame bias signal that indicates a majority state of the memory array portion can be received. During idle states of the programmable memory array portion, at least one shared bit line of the memory array portion can be selectively biased based on the received frame bias signal. In one aspect, a first one of two bit lines is biased to a first state, while the second one of the two bits lines is biased to a second state that is opposite the first state. In a further aspect, the first state is a same state as the majority state of the memory array portion.
Abstract:
Asymmetric transistors may be formed by creating pocket implants on one source-drain terminal of a transistor and not the other. Asymmetric transistors may also be formed using dual-gate structures having first and second gate conductors of different work functions. Stacked transistors may be formed by stacking two transistors of the same channel type in series. One of the source-drain terminals of each of the two transistors is connected to a common node. The gates of the two transistors are also connected together. The two transistors may have different threshold voltages. The threshold voltage of the transistor that is located higher in the stacked transistor may be provided with a lower threshold voltage than the other transistor in the stacked transistor. Stacked transistors may be used to reduce leakage currents in circuits such as memory cells. Asymmetric transistors may also be used in memory cells to reduce leakage.
Abstract:
A method of forming a contact through a material includes forming a via through a dielectric material and cleaning the via using a dilute hydrofluoric (DHF) acid solution. The method further includes depositing a barrier layer within the via and depositing metal adjacent the barrier layer.
Abstract:
In patterning a transistor, some of a layer of gate dielectric material is allowed to remain over a semiconductor substrate upon which the transistor is formed. This remaining dielectric material retards the implantation of dopants into the underlying substrate, effectively lengthening a channel region of the transistor. This mitigates unwanted short channel effects, such as leakage currents, for example, and thus mitigates yield loss by establishing a transistor that performs in a more predictable or otherwise desirable manner.
Abstract:
The present invention pertains to a system method of forming at least a portion of a dual bit memory core array upon a semiconductor substrate, the method comprising forming adjacent first memory cell process assemblies; comprising a charge trapping dielectric, a first polysilicon layer and defining a first bitline opening there between, forming first polysilicon layer features over the charge trapping dielectric layer, depositing a layer of second spacer material over the charge trapping dielectric and the first polysilicon layer features, forming a sidewall spacer adjacent to the charge trapping dielectric and the first polysilicon layer features to define a second bitline opening between the adjacent memory cells, performing a bitline implant, or pocket implants, or both into the bitline opening to establish buried bitlines within the substrate having respective bitline widths that are narrower than the respective widths of the first bitline openings, removing the sidewall spacers, and performing back end processing.
Abstract:
Integrated circuits with multiport memory elements may be provided. A multiport memory element may include a latching circuit, a first set of address transistors, and a second set of address transistors. The latching circuit may include cross-coupled inverters, each of which includes a pull-up transistor and a pull-down transistor. The first set of address transistors may couple the latching circuit to a write port, whereas the second set of address transistors may couple the latching circuit to a read port. The pull-down transistors and the second set of address transistors may have body bias terminals that are controlled by a control signal. During data loading operations, the control signal may be temporarily elevated to weaken the pull-down transistors and the second set of address transistors to improve the write margin of the multiport memory element.
Abstract:
A semiconductor device includes a core memory array and a periphery area. The core memory array area includes a group of memory cells. The periphery area includes a group of select transistors. The select transistors are formed at substantially the same pitch as the memory cells in the core memory array and with substantially the same channel length.
Abstract:
In patterning a transistor, some of a layer of gate dielectric material is allowed to remain over a semiconductor substrate upon which the transistor is formed. This remaining dielectric material retards the implantation of dopants into the underlying substrate, effectively lengthening a channel region of the transistor. This mitigates unwanted short channel effects, such as leakage currents, for example, and thus mitigates yield loss by establishing a transistor that performs in a more predictable or otherwise desirable manner.
Abstract:
One embodiment of the present invention relates to a memory cell. The memory cell comprises a substrate and a stacked gate structure disposed on the substrate, wherein the stacked gate structure comprises a charge trapping dielectric layer that is adapted to store at least one bit of data. The memory cell further includes a source and drain in the substrate, wherein the source and drain are disposed at opposite sides of the stacked gate structure. A barrier region is disposed substantially beneath the source or the drain and comprises an inert species. Other embodiments are also disclosed.