Abstract:
Various embodiments of methods and systems context-aware thermal management in a portable computing device (“PCD”) are disclosed. Notably, the environmental context to which a PCD is subjected may have significant impact on the PCD's thermal energy dissipation efficiency. Embodiments of the solution seek to leverage knowledge of a PCD's environmental context to modify or adjust thermal policy parameters applied within a PCD in response to a thermal event within the PCD.
Abstract:
Disclosed are methods and systems for proactive power and performance management of workloads in a portable computing device (“PCD”), such as, but not limited to, a virtual reality (“VR”) or augmented reality (“AR”) workload. An exemplary embodiment determines that a target application (or an application queued for execution) is compatible with a proactive throttling policy. Advantageously, for those applications that are compatible with a proactive throttling policy, embodiments of the solution may rely on historical performance data of those applications to preset performance parameters such that the PCD may deliver a consistent user experience over time uninterrupted by fluctuations in processing performance resulting from reactive thermal throttling policies.
Abstract:
Various embodiments of methods and systems for estimating environmental ambient temperature of a portable computing device (“PCD”) from electrical resistance measurements taken voice coils in a speaker or microphone component are disclosed. In an exemplary embodiment, it may be recognized that the PCD is in an idle state, thus producing little or no thermal energy. Electrical resistance measurements are taken from a voice coil and used to estimate the environmental ambient temperature to which the PCD is exposed. Certain embodiments may simply render the estimated ambient temperature for the benefit of the user or use the estimated ambient temperature as an input to a program or application running on the PCD. It is envisioned that certain embodiments of the systems and methods may use the estimated ambient temperature to adjust temperature thresholds in the PCD against which thermal management policies govern thermally aggressive processing components.
Abstract:
Because the touch temperature of a wearable computing device (“WCD”) may be an insignificant factor for user experience when the WCD is not being worn by a user, embodiments of the solution seek to modify thermal management policies based on an inferred user proximity state. Exemplary embodiments monitor one or more signals from readily available sensors in the WCD that have primary purposes other than measuring user proximity. Depending on embodiment, the sensors may be selected from a group consisting of a heart rate monitor, a pulse monitor, an O2 sensor, a bio-impedance sensor, a gyroscope, an accelerometer, a temperature sensor, a pressure sensor, a capacitive sensor, a resistive sensor and a light sensor. Using the signals generated by such sensors, relative physical proximity of the WCD to a user may be inferred and, based on the user proximity state, thermal policies either relaxed or tightened.