Abstract:
Certain aspects of the present disclosure generally relate to wireless communication. In some aspects, a UE may measure a first reference signal, associated with a frequency band of a long term evolution (LTE) system, and a second reference signal associated with a frequency band of a new radio (NR) system. The frequency band of the NR system may overlap the frequency band of the LTE system. The UE may determine first channel state feedback, associated with the frequency band of the LTE system, and second channel state feedback, associated with the frequency band of the NR system, based at least in part on the first reference signal and the second reference signal, respectively. The UE may report the first channel state feedback or the second channel state feedback in uplink control information (UCI). Other aspects are provided.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for dynamic reclamation of resources reserved for forward compatibility using communications systems operating according to new radio (NR) technologies. Certain aspects provide a method for wireless communication. The method generally includes identifying resources previously reserved for forward compatibility (FC) that are available for reuse, and providing signaling, to one or more user equipments (UEs), indicating the identified resources are available for reuse.
Abstract:
A method of wireless communication includes receiving, at a user equipment (UE), a grant from a base station on a control channel, the grant including content indicating a mini-slot assigned to the UE. The method may include interpreting the grant based on a current configuration of a data channel to determine the mini-slot. The method may include communicating with the base station during the mini-slot indicated by the grant.
Abstract:
Aspects of the present disclosure relate to deriving spatial receive parameters for quasi-colocation at a user equipment (UE). An exemplary method generally includes receiving a plurality of beams from a base station in a plurality of coarse directions, determining, based on the plurality of beams, a first spatial colocation parameter, transmitting an indication of a coarse direction associated with a beam having a highest receive strength of the plurality of beams, receiving a plurality of second beams from the base station based on the indication, the plurality of second beams having a narrower beam width than the plurality of beams and covering a beam width of the beam associated with the indicated coarse direction, determining, based on the plurality of second beams, a second spatial colocation parameter, transmitting an indication of the second beam having a highest receive strength, and refining at least one of the first or second spatial colocation parameters.
Abstract:
Aspects of the present disclosure relate to techniques that may enhance radio link failure (RLF) procedures. In some cases, a UE may perform radio link monitoring (RLM) based on reference signals (RS) transmitted using a first set of beams, perform beam failure recovery (BFR) monitoring based on transmissions using a second set of beams, and adjust one or more radio link failure (RLF) parameters based on both the RLM monitoring and the BFR monitoring.
Abstract:
Aspects of the present disclosure provide various apparatuses and methods for utilizing null resource elements to facilitate dynamic and bursty inter-cell interference measurements in a wireless network like 5G new radio (NR). A user equipment (UE) is provided with resources and signaling to facilitate bursty interference measurements at demodulation time.
Abstract:
Apparatuses and methods of beam switching are presented. A first beam switch message (BSM) is transmitted to a second device, the first BSM including a first instruction for switching beams. A reset state is selected from a plurality of reset states including a first state for the second device to disregard the first instruction and a second state for the second device to maintain execution of the first instruction. A second BSM is transmitted to the second device before the second device completes execution of the first instruction. The second BSM includes a second instruction for switching beams and indicating which reset state is selected.
Abstract:
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a user equipment (UE). The UE reports antenna capability information of the UE, the antenna capability information comprising identification information of each of one or more antenna subarrays and polarization information indicating at least one polarization supported by each of the one or more antenna subarrays. The UE further receives an indication to operate each of the one or more antenna subarrays with one or more of the at least one polarization and communicates according to the indication.
Abstract:
A time period associated with each of a plurality of tasks included in a current instance of WWAN data capture/processing by a WLAN processor and a WWAN processor is determined. A total time period comprising the respective time periods of each task is compared to an overall time budget criterion to obtain a comparison outcome. A change in at least one of the tasks based on the comparison outcome is implemented. The change results in an adjustment of the total time period associated with a next instance of WWAN data capture/processing by the WLAN processor and the WWAN processor.
Abstract:
A method of beacon detection performed by a small cell device includes: exchanging beacon parameters with a user equipment (UE); entering a low power mode after exchanging the beacon parameters with the UE; receiving, from the UE, a beacon in a random access channel (RACH) preamble containing the beacon parameters while in the low power mode; entering a high power mode in response to receiving the beacon; and associating with the UE while in the high power mode. The method of beacon detection allows a small cell device to transition from a low power mode to a high power mode in an efficient manner. The transmission may be triggered by a user equipment that is entering a service area of the small cell device.