Abstract:
Charge balanced display data writing methods use write and hold cycles of opposite polarity during selected frame update periods. The transitions between voltages of opposite polarity are sufficiently brief that the display elements do not change state. A release cycle may be provided to reduce the chance that a given display element will become stuck in an actuated state.
Abstract:
Embodiments of an interferometric modulator are disclosed having various enhancements and features including a conductive bus. In certain embodiments, the interferometric modulator has a first conductive layer suspended over a second electrode layer. In certain embodiments, a second conductive layer is provided over the first conductive layer. One of the first and/or second conductive buses may further connect to the first electrode layer and/or the second electrode layer. Other disclosed features can be incorporated into embodiments of the interferometric modulator to improve response time, power consumption, and image resolution.
Abstract:
Charge balanced display data writing methods use write and hold cycles of opposite polarity during selected frame update periods. The transitions between voltages of opposite polarity are sufficiently brief that the display elements do not change state. A release cycle may be provided to reduce the chance that a given display element will become stuck in an actuated state.
Abstract:
Methods of manufacturing light panels having at least one re-entrant turning feature. In one embodiment, a method of manufacturing a light panel includes providing a base layer, providing a cover layer, and coupling the cover layer to the base layer to form at least one re-entrant turning feature between the base layer and the cover layer. In another embodiment, a method of manufacturing a light panel includes providing a base layer, forming at least one receiving space in the base layer, providing at least one prismatic block, and coupling at least a portion of the prismatic block into the receiving space such that re-entrant turning features are formed between the prismatic block and the base layer.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for displaying high resolution images using an adaptive temporal dithering scheme on display devices having two or more color planes. The adaptive temporal dithering scheme includes identifying the dither visibility of an image to be displayed by the color planes and adaptively applying temporal dithering to the color plane having the highest dither visibility. In one aspect, temporal dithering can be adaptively applied between two different color planes on a frame-by-frame basis based at least partly on the dither visibility of the image content.
Abstract:
Two-sided, back-to-back displays are formed by sealing the backplates of two displays against one another. Mechanical parameters of the backplates, e.g., stiffness and strength, do not meet the requirements for standalone one-sided displays which are otherwise similar to the two displays. However, when sealed against one another, the backplates reinforce each other to meet or exceed the requirements for both one-sided and two-sided displays. The presence of backplates on each of the constituent one-sided displays allows one or both of those displays to be individually tested, thereby increasing the production yield of the back-to-back displays. The display elements of the displays can comprise interferometric modulators.
Abstract:
Embodiments of an interferometric modulator are disclosed having various enhancements and features including a conductive bus. In certain embodiments, the interferometric modulator has a first conductive layer suspended over a second electrode layer. In certain embodiments, a second conductive layer is provided over the first conductive layer. One of the first and/or second conductive buses may further connect to the first electrode layer and/or the second electrode layer. Other disclosed features can be incorporated into embodiments of the interferometric modulator to improve response time, power consumption, and image resolution.
Abstract:
A microelectromechanical (MEMS) device includes a substrate, a movable element over the substrate, and an actuation electrode above the movable element. The movable element includes a deformable layer and a reflective element. The deformable layer is spaced from the reflective element.
Abstract:
A spatial light modulator comprises an integrated optical compensation structure, e.g., an optical compensation structure arranged between a substrate and a plurality of individually addressable light-modulating elements, or an optical compensation structure located on the opposite side of the light-modulating elements from the substrate. The individually addressable light-modulating elements are configured to modulate light transmitted through or reflected from the transparent substrate. Methods for making such spatial light modulators involve fabricating an optical compensation structure over a substrate and fabricating a plurality of individually addressable light-modulating elements over the optical compensation structure. The optical compensation structure may be a passive optical compensation structure. The optical compensation structure may include one or more of a supplemental frontlighting source, a diffuser, a black mask, a diffractive optical element, a color filter, an anti-reflective layer, a structure that scatters light, a microlens array, and a holographic film.
Abstract:
A microelectromechanical (MEMS) device includes a substrate, a movable element over the substrate, and an actuation electrode above the movable element. The movable element includes a deformable layer and a reflective element. The deformable layer is spaced from the reflective element.