Semiconductor device and manufacturing method thereof

    公开(公告)号:US10553734B2

    公开(公告)日:2020-02-04

    申请号:US15980661

    申请日:2018-05-15

    Abstract: An improvement is achieved in the reliability of a semiconductor device. Over an insulating layer, an optical waveguide and a p-type semiconductor portion are formed. Over the p-type semiconductor portion, a multi-layer body including an n-type semiconductor portion and a cap layer is formed. Over a first interlayer insulating film covering the optical waveguide, the p-type semiconductor portion, and the multi-layer body, a heater located over the optical waveguide is formed. In the first interlayer insulating film, first and second contact holes are formed. A first contact portion electrically coupled with the p-type semiconductor portion is formed continuously in the first contact hole and over the first interlayer insulating film. A second contact portion electrically coupled with the cap layer is formed continuously in the second contact hole and over the first interlayer insulating film. A wire formed over a second interlayer insulating film is electrically coupled with the heater and the first and second contact portions via plugs embedded in the second interlayer insulating film.

    Germanium-based photoreceiver having tungsten contacts

    公开(公告)号:US10355161B2

    公开(公告)日:2019-07-16

    申请号:US15703525

    申请日:2017-09-13

    Abstract: To achieve a high-reliability germanium photoreceiver. A photoreceiver portion of a germanium photoreceiver comprised of a p type silicon core layer, an i type germanium layer, and an n type silicon layer is covered with a second insulating film and from a coupling hole formed in the second insulating film, a portion of the upper surface of the photoreceiver portion is exposed. The coupling hole has, on the inner wall thereof, a barrier metal film and the barrier metal film has thereon a first-layer wiring made of a tungsten film. Tungsten hardly diffuses from the tungsten film into the i type germanium layer even when a thermal stress is applied, making it possible to prevent the resulting germanium photoreceiver from having diode characteristics deteriorated by the thermal stress.

Patent Agency Ranking