摘要:
By providing a protective layer in an intermediate manufacturing stage, an increased surface protection with respect to particle contamination and surface corrosion may be achieved. In some illustrative embodiments, the protective layer may be used during an electrical test procedure, in which respective contact portions are contacted through the protective layer, thereby significantly reducing particle contamination during a respective measurement process.
摘要:
By providing a protective layer in an intermediate manufacturing stage, an increased surface protection with respect to particle contamination and surface corrosion may be achieved. In some illustrative embodiments, the protective layer may be used during an electrical test procedure, in which respective contact portions are contacted through the protective layer, thereby significantly reducing particle contamination during a respective measurement process.
摘要:
By providing a protective layer in an intermediate manufacturing stage, an increased surface protection with respect to particle contamination and surface corrosion may be achieved. In some illustrative embodiments, the protective layer may be used during an electrical test procedure, in which respective contact portions are contacted through the protective layer, thereby significantly reducing particle contamination during a respective measurement process.
摘要:
By providing a protective layer in an intermediate manufacturing stage, an increased surface protection with respect to particle contamination and surface corrosion may be achieved. In some illustrative embodiments, the protective layer may be used during an electrical test procedure, in which respective contact portions are contacted through the protective layer, thereby significantly reducing particle contamination during a respective measurement process.
摘要:
By providing a silicon cap layer on a compressive silicon nitride layer, the diffusion of nitrogen into sensitive resist material may be efficiently reduced, while the silicon may be converted into a highly compressive silicon dioxide in a later manufacturing stage. Consequently, yield loss due to contact failures during the formation of semiconductor devices requiring differently stressed silicon nitride layers may be reduced.
摘要:
By providing a silicon cap layer on a compressive silicon nitride layer, the diffusion of nitrogen into sensitive resist material may be efficiently reduced, while the silicon may be converted into a highly compressive silicon dioxide in a later manufacturing stage. Consequently, yield loss due to contact failures during the formation of semiconductor devices requiring differently stressed silicon nitride layers may be reduced.
摘要:
In sophisticated semiconductor devices, superior contact resistivity may be accomplished for a given contact configuration by providing hybrid contact elements, at least a portion of which may be comprised of a highly conductive material, such as copper. To this end, a well-established contact material, such as tungsten, may be used as buffer material in order to preserve integrity of sensitive device areas upon depositing the highly conductive metal.
摘要:
By appropriately designing the geometric configuration of a contact level of a sophisticated semiconductor device, the tensile stress level of contact elements in N-channel transistors may be increased, while the tensile strain component of contact elements caused in the P-channel transistor may be reduced.
摘要:
In sophisticated semiconductor devices, the contact elements connecting to active semiconductor regions having formed thereabove closely spaced gate electrode structures may be provided on the basis of a liner material so as to reduce the lateral width of the contact opening, while, on the other hand, non-critical contact elements may be formed on the basis of non-reduced lateral dimensions. To this end, at least a first portion of the critical contact element is formed and provided with a liner material prior to forming the non-critical contact element.
摘要:
Contact failures in sophisticated semiconductor devices may be reduced by relaxing the pronounced surface topography in isolation regions prior to depositing the interlayer dielectric material system. To this end, a deposition/etch sequence may be applied in which a fill material may be removed from the active region, while the recesses in the isolation regions may at least be partially filled.