Abstract:
A soft, absorbent nonwoven fibrous web, such as a wet wipe, capable of dispersing in an aqueous environment into unrecognizable pieces, made by a method comprising the steps of forming a wet-laid nonwoven web from an aqueous slurry of fibers; hydraulically needling the wet-laid nonwoven web; partially drying the hydraulically needled web; applying a binder composition to one side of the web; creping the web such that interfiber adhesion is disrupted and z-direction fiber orientation is introduced; optionally applying a binder composition to the second side of the web; recreping the web; drying and curing the web; and, converting the dried and cured web into a wet wipe, dry wipe, or other absorbent article. In the case of a wet wipe, a solution containing about 100 ppm of calcium ion is applied to the web, such as in a preserving solution. In the case of a dry wipe, the calcium ion is added after the binder is added to the web, and the final product is stored in a dry state. The combination of processes produces a web having desirable tensile strength, bulk and softness during storage and use, yet will disperse in an aqueous environment into unrecognizable pieces.
Abstract:
Nonwoven materials having a pattern incorporated into the materials are disclosed. The nonwoven materials may be, for instance, tissue webs, meltspun webs such as meltblown webs or spunbond webs, bonded carded webs, hydroentangled webs, and the like. The pattern may be incorporated into the webs using various techniques. For instance, the pattern may be formed into the web by topically applying a bonding material. In an alternative embodiment, the pattern may be formed according to a thermal bonding process. The pattern contains individual cells that include two spaced apart expanded regions separated by a constricted region. By incorporating the pattern into the web, a material is produced having a relatively low Poisson ratio.
Abstract:
The present invention is generally directed to base webs that are creped after a bonding material has been applied to at least one side of the web according to a predetermined pattern. According to the present invention, the bonding material contains a creping adhesive mixed with composite particles. The composite particles generally have a median particle size of less than about 5 microns and a particle size distribution of less than about 10 microns.
Abstract:
An improved method, and resulting product, for creping a web of papermaking fibers by adhering the web to a creping dryer and with a creping blade removing the web from the creping dryer which provides increased absorbency with less reduction in strength. The improvement comprises reducing the cohesive forces between the fibers to a greater extent than reducing the adhesive forces between the web and the creping dryer accomplished by applying a fluid at least primarily comprising water overall to the side of the web away from the creping dryer in sufficient quantity and at a position to accomplish the improved results. The method is particularly useful in the practice of wet creping wherein the web is creped from the creping dryer at a dryness of from 45% to 60%.
Abstract:
A use-dependent indicator system for detecting the exhaustion of an active chemical within an absorbent article is provided. The indicator system includes at least one dye component and a polymer mixture. The dye component(s) can be non-reactive and/or reactive dyes. The polymer mixture can contain a polymer, such as a latex adhesive, to facilitate control over the dissolution rate of the dye component(s). By controlling the dissolution rate of the dye component(s), an indicator system of the present invention can impart a change in color to signal the exhaustion of an active chemical incorporated within the absorbent article, such as an anti-microbial agent.
Abstract:
The present invention is generally directed to base webs that are creped after a bonding material has been applied to at least one side of the web according to a predetermined pattern. According to the present invention, the bonding material contains a creping adhesive mixed with composite particles. The composite particles generally have a median particle size of less than about 5 microns and a particle size distribution of less than about 10 microns.
Abstract:
A method of making a nonwoven composite material. The method includes the steps of: providing a hydraulically entangled web containing a fibrous component and a nonwoven layer of substantially continuous filaments; applying a bonding material to at least one side of said web; and creping said at least one side of the hydraulically entangled web. The bonder material may be an aqueous mixture including a curable latex polymer, a pigment, and a cure promoter. Also disclosed is a nonwoven composite material made of a hydraulically entangled web including a fibrous component; a nonwoven layer of substantially continuous filaments; and regions containing bonder material covering at least a portion of at least one side of the composite material, wherein at least one side of the web has been creped.
Abstract:
The improved creped non-laminar singular web structure comprising long fibers and short fibers demonstrated by high TWA and Z peeling. Creping causes a certain portion of long synthetic fibers and short fibers to substantially be oriented in a predetermined vertical or Z direction across the thickness of the web structure. In particular, when a stratified preparation containing wet stiff CTMP fibers is used, the vertically oriented CTMP fibers increase the total water absorption (TWA) of the web structure without collapsing. The high TWA print/double-creped paper products manufactured from the above web structure are suitable for heavy wipe and dry uses.