摘要:
The present invention relates to a method and a system for controlling a permanent magnet excited, brushless, electronically commutated, three-phase electric motor (2) wherein a single-phase main AC voltage (UN) having a mains frequency (fN) is rectified and supplied to an inverter (8) via a slender intermediate circuit (6) containing no, or minimum, intermediate circuit reactance as intermediate circuit voltage (Uz) pulsating at double the mains frequency (2fN) which is actuated for powering and commutating the electric motor (2). Control takes place by means of a field-oriented current-space vector regulator, wherein a q-current (iq) as torque-forming component of the current-space vector (i) is regulated perpendicularly to the permanent magnetic field and a d-current (id) can be regulated as a field-influencing component of the current-space vector (i) in the direction of the permanent magnet field. In this case, dynamic field attenuation occurs, wherein the d-current (id) in the negative range is defined with a sinusoidal profile and at double the main frequency (2fN) and wherein the d-current (id) is regulated according to its phase position and its amplitude such that ripple of the q-current (iq) is minimized. Since the q-current as torque forming component is proportional to the torque, thus the torque ripple is also minimized, in spite of the strongly pulsating intermediate circuit voltage (Uz).
摘要:
An electronic circuit comprises at least one semiconductor switch mounted with its switching path in series with an inductive load to be triggered, and at least one freewheeling element that interacts with the semiconductor switch during switching phases and is also mounted in series with the load. A control unit controls a control connection of the semiconductor switch with a variable control current as a function of the time profile of a voltage measured at the freewheeling element and/or as a function of the time profile of the voltage measured at the switching path. A method for triggering a semiconductor switch of such a circuit, triggered by a variable control current for switching, the control current predefined as a function of the time profile of a voltage measured at the freewheeling element and/or as a function of the time profile of the voltage measured at the switching path.
摘要:
An electronic circuit comprises at least one semiconductor switch mounted with its switching path in series with an inductive load to be triggered, and at least one freewheeling element that interacts with the semiconductor switch during switching phases and is also mounted in series with the load. A control unit controls a control connection of the semiconductor switch with a variable control current as a function of the time profile of a voltage measured at the freewheeling element and/or as a function of the time profile of the voltage measured at the switching path. A method for triggering a semiconductor switch of such a circuit, triggered by a variable control current for switching, the control current predefined as a function of the time profile of a voltage measured at the freewheeling element and/or as a function of the time profile of the voltage measured at the switching path. The electronic circuit according to the disclosure is advantageously used for triggering semiconductor switches of a bridge inverter circuit, in particular for operating an EC motor.
摘要:
The present invention relates to a method and a control system for driving a three-strand brushless, electronically commutated electric motor (2), wherein a line AC voltage (UN) is rectified and fed via a slim DC link (8) with minimum DC link reactance as a DC link voltage (UZ) to an inverter (10) that can be driven to supply and commutate the electric motor (2). A pulsating DC voltage (UG) initially generated by rectifying the line AC voltage (UN) is dynamically increased with respect to its instantaneous values by a step-up chopper (18) in such a manner that the resulting DC link voltage (UZ) with a reduced ripple always lies above a defined limit voltage (U18/U1) over time. The control system consists of a network rectifier (6), a downstream slim DC link (8) with minimum DC link reactance and a controllable inverter (10) that can be supplied via the DC link and driven to commutate the electric motor (2). A step-up chopper (18) is integrated therein with a controller (20) designed in such a manner that, the pulsating DC voltage (UG) rectified by the network rectifier (6) is dynamically increased with respect to its instantaneous values in such a manner that the resulting DC link voltage (UZ) with a reduced ripple always lies above a defined limit voltage (U20/U1) over time. Stray inductances (Ls1-Ls3) of the motor winding heads present in the electric motor (2) are used as inductor (L) for the step-up chopper (18).
摘要:
The present invention relates to a method and a system for controlling a permanent magnet excited, brushless, electronically commutated, three-phase electric motor (2) wherein a single-phase main AC voltage (UN) having a mains frequency (fN) is rectified and supplied to an inverter (8) via a slender intermediate circuit (6) containing no, or minimum, intermediate circuit reactance as intermediate circuit voltage (Uz) pulsating at double the mains frequency (2fN) which is actuated for powering and commutating the electric motor (2). Control takes place by means of a field-oriented current-space vector regulator, wherein a q-current (iq) as torque-forming component of the current-space vector (i) is regulated perpendicularly to the permanent magnetic field and a d-current (id) can be regulated as a field-influencing component of the current-space vector (i) in the direction of the permanent magnet field. In this case, dynamic field attenuation occurs, wherein the d-current (id) in the negative range is defined with a sinusoidal profile and at double the main frequency (2fN) and wherein the d-current (id) is regulated according to its phase position and its amplitude such that ripple of the q-current (iq) is minimized. Since the q-current as torque forming component is proportional to the torque, thus the torque ripple is also minimized, in spite of the strongly pulsating intermediate circuit voltage (Uz).
摘要:
The present invention relates to a method and a control system for driving a three-strand brushless, electronically commutated electric motor (2), wherein a line AC voltage (UN) is rectified and fed via a slim DC link (8) with minimum DC link reactance as a DC link voltage (UZ) to an inverter (10) that can be driven to supply and commutate the electric motor (2). A pulsating DC voltage (UG) initially generated by rectifying the line AC voltage (UN) is dynamically increased with respect to its instantaneous values by a step-up chopper (18) in such a manner that the resulting DC link voltage (UZ) with a reduced ripple always lies above a defined limit voltage (U18/U1) over time. The control system consists of a network rectifier (6), a downstream slim DC link (8) with minimum DC link reactance and a controllable inverter (10) that can be supplied via the DC link and driven to commutate the electric motor (2). A step-up chopper (18) is integrated therein with a controller (20) designed in such a manner that, the pulsating DC voltage (UG) rectified by the network rectifier (6) is dynamically increased with respect to its instantaneous values in such a manner that the resulting DC link voltage (UZ) with a reduced ripple always lies above a defined limit voltage (U20/U1) over time. Stray inductances (Ls1-Ls3) of the motor winding heads present in the electric motor (2) are used as inductor (L) for the step-up chopper (18).
摘要:
An electronic control circuit for an electronically commutated motor (ECM) is disclosed. A plurality of power transistors controls the ECM, and a reference transistor is formed together with the power transistors on a common support. A control unit is configured to, in a test mode: apply a test current to the reference transistor and one of the power transistors respectively; measure a saturation voltage of the reference transistor and one of the power transistors; evaluate a saturation voltage difference between the measured saturation voltages of the reference transistor and the respective power transistor; evaluate a rate of change of saturation voltage differences between a first iteration of the test mode and a second iteration of the test mode; and determine an expected remaining service life of the power transistors based on the temperature of the support during the test mode and the rate of change of the saturation voltage differences.
摘要:
A control circuit (1) for an electronically commutated, direct current motor (M) without a collector with a semiconductor end stage (2) which is controlled by an electronic commutation control (4) via a driver stage (6) for the time-offset control of the stator coils (U,V,W) of the motor (M) for the purpose of producing a magnetic rotating field for a rotor depending on the rotor rotation position. Two redundant stall protection units (10, 12) monitor the motor (M) during operation for rotation of the rotor, whereby in the case of a determined stall situation, the first stall protection unit (10) deactivates the driver stage (6) and the second stall protection unit (12) shuts off the supply voltage (UVCC) for the driver stage (6).
摘要:
A clean room system has filter-fan units each having at least one fan motor and being connected to an electric network. At least one central control unit is provided. A connecting bus system for connecting the filter-fan units to one another and to the at least one central control unit is provided.
摘要:
A brushless dc external-rotor motor having a hollow cylindrical heat sink fastened to the peripheral border region of a printed circuit board. Power semiconductors are arranged on an inner cylinder wall of the heat sink in a heat conducting manner, and the cylinder wall forms part of the peripheral border of the stator flange in the motor. A connector fastens Hall generator(s) on the circuit board and provides the electrical connection with the circuit board. The connector can be soldered along with all other electronic components in a joint soldering process, wherein a subassembly of a preassembled circuit board and a heat sink fastened to its periphery and carrying the power semiconductors passes through a solder bath to solder all components in a single soldering process. It is subsequently necessary only to plug the Hall generator or generators onto the connector or connectors soldered onto the circuit board. The connector can include individual contact tubes, which are soldered in the circuit board and into which the connection pins of a respective Hall generator can be plugged.