摘要:
In general, techniques are described for synchronizing gateway layer two (L2) addresses of routers that cooperate to provide interconnectivity to multiple, separate L2 networks. In one example, a router includes a VPLS module that establishes a VPLS instance to provide L2 connectivity between a local L2 network for the router and a remote L2 network for the router, wherein the router is addressable by a gateway L2 address. A synchronization module receives a gateway L2 address synchronization message that includes an additional gateway L2 address for an additional router. An integrated routing and bridging (IRB) interface of the router receives a L2 PDU from the local L2 network on an attachment circuit for the VPLS instance attached to the interface card, and a forwarding unit routes a layer three (L3) packet carried by the PDU when the PDU has an L2 destination address that matches the additional gateway L2 address.
摘要:
Methods, apparatus, and products are disclosed for routing frames in a TRILL network using service VLAN identifiers by: receiving a frame from an ingress bridge node for transmission through the TRILL network to a destination node that connects to the TRILL network through an egress node, the received frame including a customer VLAN identifier, a service VLAN identifier uniquely assigned to the ingress bridge node, and a destination node address for the destination node, the received frame not having mac-in-mac encapsulation; adding, in dependence upon the service VLAN identifier and the destination node address, a TRILL header conforming to the TRILL protocol, the TRILL header including an ingress bridge nickname and an egress bridge nickname; and routing, to the egress bridge node through which the destination node connects to the network, the frame in dependence upon the ingress bridge nickname and the egress bridge nickname.
摘要:
Techniques are described for forwarding packets in a VPLS using multi-homing PE routers configured in an “active-active” link topology. A router includes a control unit that forms a customer-facing multi-chassis link aggregation group (LAG) to include a plurality of active access links that couple the router and a second router to a multi-homed customer site associated with the VPLS domain. The control unit also forms a core-facing multi-chassis LAG within the VPLS domain to include a plurality of pseudowires that connect the router and other member routers of the core-facing LAG to a common remote router of the VPLS domain. The router receives layer two (L2) packets from the multi-homed customer site on one or more of the active access links and forwards the L2 packets to the remote router over one or more of the pseudowires using the core-facing multi-chassis LAG.
摘要:
Methods, apparatus, and products are disclosed for routing frames in a TRILL network using service VLAN identifiers by: receiving a frame from an ingress bridge node for transmission through the TRILL network to a destination node that connects to the TRILL network through an egress node, the received frame including a customer VLAN identifier, a service VLAN identifier uniquely assigned to the ingress bridge node, and a destination node address for the destination node, the received frame not having mac-in-mac encapsulation; adding, in dependence upon the service VLAN identifier and the destination node address, a TRILL header conforming to the TRILL protocol, the TRILL header including an ingress bridge nickname and an egress bridge nickname; and routing, to the egress bridge node through which the destination node connects to the network, the frame in dependence upon the ingress bridge nickname and the egress bridge nickname.
摘要:
A provider edge bridge in a service provider network receives multiple media access control (MAC) Registration Protocol (MMRP) registration messages from customer networks via tunnels. The provider edge bridge snoops the MMRP registration messages to obtain multicast MAC addresses from the registration messages, and tunnels the MMRP registration messages toward one or more other bridges. The provider edge bridge constructs multicast forwarding tables based on the multicast addresses obtained from snooping the MMRP registrations, and uses the multicast forwarding tables for forwarding data units from the provider edge bridge towards destinations.
摘要:
A device includes one or more network interfaces to receive layer two (L2) communications from an L2 network having a plurality of L2 devices; and a control unit to forward the L2 communications in accordance with forwarding information defining a plurality of flooding next hops. Each of the flooding next hops stored by the control unit specifies a set of the L2 devices within the L2 network to which to forward L2 communications in accordance with a plurality of trees, where each of the trees has a different one of the plurality of L2 devices as a root node. The control unit of the device computes a corresponding one of flooding next hops for each of the trees using only a subset of the trees without computing all of the trees having all of the different L2 network devices as root nodes.
摘要:
A first provider edge (PE) device is configured to: receive a Label Distribution Protocol (LDP) MAC Flush message from a PE device via an input port; flush a routing table in response to the LDP MAC Flush message; determine whether the LDP MAC Flush message comprises a PE identifier corresponding to the PE device; generate a Topology Change Notification (TCN) message based on the LDP MAC Flush message when the LDP MAC Flush message comprises the PE identifier corresponding to the PE device; and output the TCN message.
摘要翻译:第一提供商边缘(PE)设备被配置为:经由输入端口从PE设备接收标签分发协议(LDP)MAC刷新消息; 刷新路由表以响应LDP MAC Flush消息; 确定LDP MAC Flush消息是否包括与PE设备相对应的PE标识符; 当LDP MAC Flush消息包括与PE设备对应的PE标识符时,基于LDP MAC Flush消息生成拓扑变化通知(TCN)消息; 并输出TCN消息。
摘要:
Methods, apparatus, and products for routing frames in a network using bridge identifiers, wherein the network includes a plurality of bridge nodes. At least one of the bridge nodes operates as an ingress bridge node through which frames are received into the network. At least one of the bridge nodes operates as an egress bridge node through which frames are transmitted out of the network. One of the bridge nodes receives, from the ingress bridge node, a frame for transmission to a destination node. The destination node connects to the network through the egress bridge node. The frame includes an ingress bridge identifier and an egress bridge identifier. The bridge that received the frame then routes the frame to the egress bridge node through which the destination node connects to the network in dependence upon the ingress bridge identifier and the egress bridge identifier included in the frame.
摘要:
Methods, apparatus, and products for routing frames in a network using bridge identifiers, wherein the network includes a plurality of bridge nodes. At least one of the bridge nodes operates as an ingress bridge node through which frames are received into the network. At least one of the bridge nodes operates as an egress bridge node through which frames are transmitted out of the network. One of the bridge nodes receives, from the ingress bridge node, a frame for transmission to a destination node. The destination node connects to the network through the egress bridge node. The frame includes an ingress bridge identifier and an egress bridge identifier. The bridge that received the frame then routes the frame to the egress bridge node through which the destination node connects to the network in dependence upon the ingress bridge identifier and the egress bridge identifier included in the frame.
摘要:
Methods, apparatus, and products for routing frames in a shortest path computer network for a multi-homed legacy bridge, wherein the network includes a plurality of bridges. At least two of the plurality of bridges operate as edge bridges through which the frames ingress and egress the network. A first edge bridge identifies a legacy bridge nickname for a legacy bridge connected to the network through the first edge bridge and a second edge bridge using active-active link aggregation. The first bridge receives a frame from the legacy bridge and determines, in dependence upon the frame's destination node address, an egress bridge nickname for a third bridge through which a destination node connects to the network. The first bridge then adds the legacy bridge nickname and the egress bridge nickname to the frame and routes the frame to the third bridge in dependence upon the egress bridge nickname.