摘要:
A gas turbine engine component and coating system including a superalloy substrate having a coating system disposed thereon. A bond coating may be applied to the substrate. An adherent layer of ceramic material forming a thermal barrier coating is present on the bond coat layer. A topcoat layer overlies the thermal barrier coating. The topcoat layer includes greater than about 20 wt % yttria.
摘要:
A coating applied as a two layer system. The outer layer is an oxide of a group IV metal selected from the group consisting of zirconium oxide, hafnium oxide and combinations thereof, which are doped with an effective amount of a lanthanum series oxide. These metal oxides doped with a lanthanum series addition comprises a high weight percentage of the outer coating. As used herein, lanthanum series means an element selected from the group consisting of lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu) and combinations thereof, and lanthanum series oxides are oxides of these elements. When the zirconium oxide is doped with an effective amount of a lanthanum series oxide, a dense reaction layer is formed at the interface of the outer layer of TBC and the CMAS. This dense reaction layer prevents CMAS infiltration below it. The second layer, or inner layer underlying the outer layer, comprises a layer of partially stabilized zirconium oxide.
摘要:
Thermal barrier coating systems for use with hot section components of a gas turbine engine include an inner layer overlying a bond coated substrate and a top layer overlying at least a portion of the inner layer. The inner layer includes a thermal barrier material such as yttria-stabilized zirconia. The top layer includes a rare earth aluminate. The thicknesses and microstructures of the layers may be varied depending on the type of component to be coated. Articles incorporating the thermal barrier coating system exhibit improved resistance to CMAS infiltration.
摘要:
Methods for providing improved resistance to CMAS infiltration for hot section components of a gas turbine engine. Exemplary methods include coating a substrate with a thermal barrier coating system by overlying a bond coated substrate with an inner thermal barrier layer comprised of a thermal barrier material such as yttria-stabilized zirconia. A top layer, including a rare-earth aluminate, is deposited so as to overlie at least a portion of the inner layer. Deposition processes and coating thicknesses may be tailored to the type of component to be coated.
摘要:
Thermal barrier coating systems for use with hot section components of a gas turbine engine include an inner layer overlying a bond coated substrate and a top layer overlying at least a portion of the inner layer. The inner layer includes a thermal barrier material such as yttria-stabilized zirconia. The top layer includes a rare earth aluminate. The thicknesses and microstructures of the layers may be varied depending on the type of component to be coated. Articles incorporating the thermal barrier coating system exhibit improved resistance to CMAS infiltration
摘要:
A gas turbine engine component and coating system including a superalloy substrate having a coating system disposed thereon. A bond coating may be applied to the substrate. An adherent layer of ceramic material forming a thermal barrier coating is present on the bond coat layer. A topcoat layer overlies the thermal barrier coating. The topcoat layer includes greater than about 20 wt % yttria.
摘要:
A coating and process for depositing the coating on a substrate. The coating is a nickel aluminide overlay coating of predominantly the beta (NiAl) and gamma-prime (Ni3Al) intermetallic phases, and is suitable for use as an environmental coating and as a bond coat for a thermal barrier coating (TBC). The coating can be formed by depositing nickel and aluminum in appropriate amounts to yield the desired beta+gamma prime phase content. Alternatively, nickel and aluminum can be deposited so that the aluminum content of the coating exceeds the appropriate amount to yield the desired beta+gamma prime phase content, after which the coating is heat treated to diffuse the excess aluminum from the coating into the substrate to yield the desired beta+gamma prime phase content.
摘要:
A protected article is prepared by providing the article, depositing a bond coat onto an exposed surface of the article, and producing a thermal barrier coating on an exposed surface of the bond coat. The step of producing the thermal barrier coating includes the steps of depositing a primary ceramic coating onto an exposed surface of the bond coat, and depositing a stabilization composition onto an exposed surface of the primary ceramic coating. The stabilization composition includes a first element selected from Group 2 or Group 3 of the periodic table, and a second element selected from Group 5 of the periodic table. The atomic ratio of the amount of the first element to the amount of the second element is at least 1.3, more preferably at least 1:1.
摘要:
A coating process for an article having a substrate formed of a metal alloy that is prone to the formation of a secondary reaction zone (SRZ). The coating process forms a coating system that includes an aluminum-containing overlay coating and a stabilizing layer between the overlay coating and the substrate. The overlay coating contains aluminum in an amount greater by atomic percent than the metal alloy of the substrate, such that there is a tendency for aluminum to diffuse from the overlay coating into the substrate. The stabilizing layer is predominantly or entirely formed of at least one platinum group metal (PGM), namely, platinum, rhodium, iridium, and/or palladium. The stabilizing layer is sufficient to inhibit diffusion of aluminum from the overlay coating into the substrate so that the substrate remains essentially free of an SRZ that would be deleterious to the mechanical properties of the alloy.
摘要:
In accordance with an embodiment of the invention, an article is provided. The article comprises a substrate comprised of silicon containing material, an environmental barrier coating (EBC) overlying the substrate and a thermal barrier coating (TBC) on the environmental barrier coating. The thermal barrier coating comprising a compound having a rhombohedral phase.