Abstract:
The present invention discloses systems and methods for protecting electronic devices (switching and non-switching) such as micro electro-mechanical system (MEMS) devices and solid state relays due to lightning exposure or electrical power surges in double end exposed systems. Over voltage suppressors and over current detectors are used to limit the exposure of high voltages and currents to the MEMS and solid-state relay devices in double end exposed systems.
Abstract:
The present invention is directed to a remotely actuated splitter bypass function (RASB) working in conjunction with a test head at the central office for testing and maintaining copper loops in the digital subscriber line environment. The RASB allows a competitive local exchange carrier to test and maintain the xDSL portion of the copper loop with minimal interference and disturbance to/from the plain old telephone system (POTS) service by bypassing the central office splitter. The splitter bypass operation includes the steps of selecting a copper loop pair for testing, actuating a first relay for monitor mode, actuating a second relay for bypass mode, testing the selected copper loop, and resetting the first and second relays back to normal mode. By applying positive and negative voltages from the tip and ring with respect to ground, various relays can be set (actuated) and reset to provide multiple modes of operations. In this manner, relays can be designed to respond in certain voltage levels and polarities.
Abstract:
A subscriber line interface circuit is described wherein the transverse and longitudinal termination impedances may be independently controlled; and wherein the equivalent termination impedance of a subscriber line/trunk as appears to the central office can be adjusted upward or downward from a lower resistance value, with longitudinal balance (also known as the common mode rejection) being determined by the matching of feed resistors. The foregoing interface circuit is implementable as a monolithic integrated circuit having low power dissipation, improved power bandwidth requirements, and lower voltage breakdown requirements for integrated circuits; all resulting in an improved telephone line interface circuit. Voltage feedback or current feedback may be employed in a circuit to synthesize the proper ac transverse termination impedance from a known dc resistance, for example, from the feed line resistors in a telephone line circuit.
Abstract:
The present invention discloses systems and methods for protecting electronic devices (switching and non-switching) such as micro electro-mechanical system (MEMS) devices and solid state relays due to lightning exposure or electrical power surges. An over voltage protector and an over current protector are used to limit the exposure of high voltages and currents to the MEMS devices and solid-state relays. A relay or equivalent device is energized when a high current is sensed in the loop, which relay is used to protect the MEMS devices and solid state relays from damage. The relay can be controlled via software/hardware and works in conjunction with other components/devices in the overall systems. In this manner, any number of MEMS devices or solid state relays can be protected.
Abstract:
The present invention is directed to a remotely actuated splitter bypass function (RASB) working in conjunction with a test head at the central office for testing and maintaining copper loops in the digital subscriber line environment. The RASB allows a competitive local exchange carrier to test and maintain the xDSL portion of the copper loop with minimal interference and disturbance to/from the plain old telephone system (POTS) service by bypassing the central office splitter. The splitter bypass operation includes the steps of selecting a copper loop pair for testing, actuating a first relay for monitor mode, actuating a second relay for bypass mode, testing the selected copper loop, and resetting the first and second relays back to normal mode. By applying positive and negative voltages from the tip and ring with respect to ground, various relays can be set (actuated) and reset to provide multiple modes of operations. In this manner, relays can be designed to respond in certain voltage levels and polarities.
Abstract:
The invention presented herein is directed to a remotely addressable maintenance unit (RAMU) working in conjunction with a test head at the central office for detecting and locating faults in digital subscriber loop (DSL) and/or plain old telephone system (POTS) environments. The RAMU includes circuitry for setting and resetting one or more relays for either normal or testing/maintenance mode. The present invention provides a system and method for addressing the RAMU by applying either positive or negative voltages from the tip to ground, from ring to ground, and from tip and ring to ground. In this manner, individual RAMUs can be defined/designed to respond in certain voltage levels and polarities. Accurate fault detection and sectionalization is achieved by the combination of the addressing capabilities enumerated herein, and the impedance signature designed into the RAMU, working in concert with a test head in the central office.
Abstract:
An apparatus and method of organizing line interface modules between analog subscriber lines/trunks and a digital switch with the provision for ringing signals which may be shared by a plurality of lines from a single source is described. The ringing signals are intercoupled to any line or lines and transmitted through a common metallic bus which provides immediate ringing for any line, with a shared ring-trip circuit. A software-controlled and/or programmable signal generator in combination with a novel ring-trip circuit is described wherein ringing cadence is generated by connecting the programmable signal generator to a subscriber line for the proper duration and at any desired frequency, whereby multi-frequency ringing can be accomplished under programmable control. A spare line control function within a cluster of telecommunications line circuits is provided such that any telecommunications line circuit can arbitrarily be designated as a spare line, usable to provide temporary service, for example, to a telephone subscriber having a defective line, thereby permitting scheduled maintenance rather than on-demand maintenance. Immediate ringing is provided to groups of analog telephone lines having shared ringing sources and shared ring-trip circuits in a system architecture compatible with a digital switching system.
Abstract:
A telephone line circuit including a high voltage amplifier feeds the tip and ring lines at its output. This amplifier is fed by a programmable voltage source which includes a d.c./d.c. converter and means to control the amplitude and polarity of this voltage. All the required electrical signals including d.c. feeding, speech, unsymmetrical ringing and metering pulses are provided through the high voltage amplifier. No high voltage AC switches (relay contacts) are required since the ring signal is provided through the same device (output amplifier) as the speech and d.c. signals. Means are included for minimizing the internal power dissipation by controlling the amplitude of the d.c./d.c. converter voltage. Thus d.c. offset control is achieved by slaving the d.c./d.c. converter voltage to the amplifier output voltage. Three functional blocks form the line interface circuit according to the invention, these being a high voltage circuit including the aforementioned amplifier, a programmable signal generator which includes the d.c./d.c. converter and electronic solid state switching under control of a line feed and supervision circuit which constitutes the third block.
Abstract:
A subscriber line interface circuit is described wherein current supplied to a telephone subscriber line from a shared voltage source such as a DC/DC converter is regulated thereby permitting a regulated line current to be supplied to a plurality of line circuits from a single shared voltage source. In accordance with the present invention, both the dc line feed and the ac transmission requirements of a subscriber line interface circuit for a telephone exchange are implemented in a single circuit incorporating ac and dc impedance synthesis techniques. A significant reduction in the heretofore required expensive and bulky discrete components of the subscriber line interface circuit is achieved.
Abstract:
A codec including an encoder section for encoding analog signals in compressed PCM (CPCM) and a decoder section for decoding CPCM information into analog signals features a single companding generator shared by the encoder and decoder sections. In the encoder section, an analog signal to be encoded is sampled periodically and the analog samples are compared with the decaying voltage of the companding generator which includes a capacitor, which is initially charge to a fixed voltage E. The capacitor is then discharge through a fixed resistance to another fixed voltage -dE, the discharge time being measured by a binary digital encoder counter from the start of the discharge until the voltage on the capacitor equals the absolute value of the given analog signal sample, at which time the count of the binary counter represents the desired compressed pulse code of the analog signal samples magnitude. Additionally, a sign bit, derived from the analog signal sample, indicates the polarity of said sample. In the decoder section, a CPCM input signal to be decoded is loaded into a decoder counter, which is decremented to a zero count, while the decaying voltage of the companding generator is sampled. The resultant sample represents the magnitude of the analog signal output for the decoded CPCM code, either directly or inverted, depending upon the sign bit. This sampled signal is further presented to a low-pass filter at a predetermined interval of the codec operating cycle dictated by the sampling frequency. The output of low-pass filter is the desired reconstructed analog signal.