摘要:
A data processing system includes a processor core and a memory subsystem. The memory subsystem includes a store queue having a plurality of entries, where each entry includes an address field for holding the target address of store operation, a data field for holding data for the store operation, and a virtual sync field indicating a presence or absence of a synchronizing operation associated with the entry. The memory subsystem further includes a store queue controller that, responsive to receipt at the memory subsystem of a sequence of operations including a synchronizing operation and a particular store operation, places a target address and data of the particular store operation within the address field and data field, respectively, of an entry in the store queue and sets the virtual sync field of the entry to represent the synchronizing operation, such that a number of store queue entries utilized is reduced.
摘要:
A data processing system includes a memory subsystem and an execution unit, coupled to the memory subsystem, which executes store instructions to determine target memory addresses of store operations to be performed by the memory subsystem. The data processing system further includes a mode field having a first setting indicating strong ordering between store operations and a second setting indicating weak ordering between store operations. Store operations accessing the memory subsystem are associated with either the first setting or the second setting. The data processing system also includes logic that, based upon settings of the mode field, inserts a synchronizing operation between a store operation associated with the first setting and a store operation associated with the second setting, such that all store operations preceding the synchronizing operation complete before store operations subsequent to the synchronizing operation.
摘要:
A cache, system and method for reducing the number of rejected snoop requests. An incoming snoop request is entered in the first available latch in a pipeline of latches in a stall/reorder unit if the stall/reorder unit is not full. The entered snoop request is dispatched to a selector upon entering a bottom latch in the pipeline. The stall/reorder unit is not informed as to whether the dispatched snoop request is accepted by an arbitration mechanism for several clock cycles after the dispatch occurred. A copy of the dispatched snoop request is stored in a top latch in an overrun pipeline of latches in the first unit upon dispatching the snoop request. By maintaining information about the snoop request, the snoop request may be dispatched again to the selector in case the dispatched snoop request was rejected thereby increasing the chance that the snoop request will ultimately be accepted.
摘要:
A cache, system and method for reducing the number of rejected snoop requests. An incoming snoop request is entered in the first available latch in a pipeline of latches in a stall/reorder unit if the stall/reorder unit is not full. The entered snoop request is dispatched to a selector upon entering a bottom latch in the pipeline. The stall/reorder unit is not informed as to whether the dispatched snoop request is accepted by an arbitration mechanism for several clock cycles after the dispatch occurred. A copy of the dispatched snoop request is stored in a top latch in an overrun pipeline of latches in the first unit upon dispatching the snoop request. By maintaining information about the snoop request, the snoop request may be dispatched again to the selector in case the dispatched snoop request was rejected thereby increasing the chance that the snoop request will ultimately be accepted.
摘要:
A cache, system and method for reducing the number of rejected snoop requests. An incoming snoop request is entered in the first available latch in a pipeline of latches in a stall/reorder unit if the stall/reorder unit is not full. The entered snoop request is dispatched to a selector upon entering a bottom latch in the pipeline. The stall/reorder unit is not informed as to whether the dispatched snoop request is accepted by an arbitration mechanism for several clock cycles after the dispatch occurred. A copy of the dispatched snoop request is stored in a top latch in an overrun pipeline of latches in the first unit upon dispatching the snoop request. By maintaining information about the snoop request, the snoop request may be dispatched again to the selector in case the dispatched snoop request was rejected thereby increasing the chance that the snoop request will ultimately be accepted.
摘要:
A processing unit for a data processing system includes a processor core having one or more execution units for processing instructions and a register file for storing data accessed in processing of the instructions. The processing unit also includes a multi-level cache hierarchy coupled to and supporting the processor core. The multi-level cache hierarchy includes at least one upper level of cache memory having a lower access latency and at least one lower level of cache memory having a higher access latency. The lower level of cache memory, responsive to receipt of a memory access request that hits only a partial cache line in the lower level cache memory, sources the partial cache line to the at least one upper level cache memory to service the memory access request. The at least one upper level cache memory services the memory access request without caching the partial cache line.
摘要:
A cache, system and method for reducing the number of rejected snoop requests. A “stall/reorder unit” in a cache receives a snoop request from an interconnect. The snoop request is entered in the first available latch of the stall/reorder unit unless the stall/reorder unit is full in which case the new snoop request is transmitted to a second unit configured to transmit a request to retry resending the new snoop request. Snoop requests have a higher priority than requests from processors and snoop requests are selected by the arbitration mechanism over processor requests unless the arbitration mechanism requests otherwise (“stall request”) to the stall/reorder unit. By snoop requests having a higher priority than processor requests, the number of snoop requests rejected is reduced. By having the arbitration mechanism issue a stall request, the processor will not be starved.
摘要:
A cache, system and method for reducing the number of rejected snoop requests. A “stall/reorder unit” in a cache receives a snoop request from an interconnect. The snoop request is entered in the first available latch of the stall/reorder unit unless the stall/reorder unit is full in which case the new snoop request is transmitted to a second unit configured to transmit a request to retry resending the new snoop request. Snoop requests have a higher priority than requests from processors and snoop requests are selected by the arbitration mechanism over processor requests unless the arbitration mechanism requests otherwise (“stall request”) to the stall/reorder unit. By snoop requests having a higher priority than processor requests, the number of snoop requests rejected is reduced. By having the arbitration mechanism issue a stall request, the processor will not be starved.
摘要:
A data processing system includes a processor core and a memory subsystem coupled to the processor core. The memory subsystem includes data storage and a store queue including a plurality of entries for buffering store operations to be performed with reference to the data storage. The memory subsystem further includes a store queue controller that gathers multiple store requests received from the processor core into a single store operation buffered within an entry of the store queue. The store queue controller applies store gathering windows of differing durations to differing ones of the plurality of entries in response to control information received from the processor core.
摘要:
A processing unit for a data processing system includes a processor core having one or more execution units for processing instructions and a register file for storing data accessed in processing of the instructions. The processing unit also includes a multi-level cache hierarchy coupled to and supporting the processor core. The multi-level cache hierarchy includes at least one upper level of cache memory having a lower access latency and at least one lower level of cache memory having a higher access latency. The lower level of cache memory, responsive to receipt of a memory access request that hits only a partial cache line in the lower level cache memory, sources the partial cache line to the at least one upper level cache memory to service the memory access request. The at least one upper level cache memory services the memory access request without caching the partial cache line.