摘要:
The present invention generally relates to digital watermarking and steganography. In one implementation, a method is provided including acts of receiving a media signal comprising a steganographic signal redundantly embedded therein; selecting a subset of the media signal for steganographic signal detection, wherein the subset of the media signal is selected based on at least one media signal characteristic associated with the subset; and detecting a steganographic signal hidden in the subset of the media signal. In another implementation, a digital watermark detector is providing including: electronic processing circuitry; memory; and executable instructions stored in memory for execution by said electronic processing circuitry. The instructions comprises instructions to: process a media signal comprising a digital watermark redundantly embedded therein; select a subset of the media signal for watermark detection, wherein the subset of the media signal is selected based on at least one media signal characteristic associated with the subset; and detect a digital watermark hidden in the subset of the media signal.
摘要:
The present invention detects the presence of a watermark in-an image by using a multi-step process. First, the image is examined to determine which regions of the image have characteristics such that there is a high probability that a watermark signal can be detected in that region of the image. Next the regions that have a high probability that a watermark can be detected (in contrast to all regions of the image) are examined to find watermark data. In order to determine the probability of finding watermark data in a particular region of an image, the amount of “variance” in the intensity of the pixels in the region is first examined. For example a region that is entirely white or entirely black has zero variance in luminance. Such a region can not carry watermark data, hence regions with zero or low variance can be eliminated from further processing. Furthermore, if a high variance in a region is a result of the fact that the region has an abrupt border or edge between two highly contrasting regions, the high variance does not indicate a high probability that a watermark signal will be detected in the region. Therefore, after regions with high variance are located, these regions are next examined to look for regions with high edginess spread. Finally, regions with the high variance and high edginess spread are selected for further processing to detect watermark data. For those regions selected for further processing, the detection process can be enhanced by filtering the data with a two step process to increase the signal to noise ratio of the watermark signal. First a high pass filter (e.g. a Laplacian operator) is applied to each region. This filtering operation in effect established a new intensity value for each pixel in the region. Next a nonlinear operator (e.g. a signum function) is applied to the output from the first filter operation. The resulting data is examined to detect watermark data.
摘要:
The present invention relates generally to steganographic encoding and/or digital watermarking. In one embodiment, an apparatus is provided including: an input to receive imagery or video; a processor to act on received imagery or video, said processor programmed to steganographically embed a first code and a second code in the imagery or video, the first code comprising a publicly accessible code and the second code comprising a less publicly accessible code relative to the first code; and an output to output embedded imagery or video. Other implementations and embodiments are described and claimed as well.
摘要:
The present invention relates generally to steganographic encoding and/or digital watermarking. In one embodiment, a method is provided including: obtaining an image or video; encoding a first steganographic component in the image or video, wherein the first steganographic component comprises a first set of properties that are designed to be affected in a first manner when transformed from a first color gamut to a second color gamut; and encoding a second steganographic component in the image or video, wherein the first steganographic component comprises a second set of properties that are designed to be affect in a second manner when transformed from the first color gamut to the second color gamut. Other implementations and embodiments are provided and claimed as well.
摘要:
Image, video, and/or audio data is encoded with at least first and second watermarks. In one implementation a method includes: receiving content; embedding a first watermark signal in the content; compressing the content; embedding a second watermark signal in the content. The first watermark signal and the second watermark signal are designed to respond differently to at least a first type of signal processing. Other implementations are also provided.
摘要:
Two or more digital watermarks are embedded in an identification document. In one implementation the digital watermarks include characteristics that are chosen so that the watermarks will be affected in different manners if the identification document is subsequently copied or reproduced. The detection process or mechanism reads two or more of the watermarks and compares their characteristics. In another implementation, the digital watermarks include characteristics that cooperate for authentication.
摘要:
Multiple digital watermarks, each of which has different characteristics, are embedded in a document. The characteristics of the various watermarks are chosen so that each of the watermarks will be affected in a different manner if the document is subsequently copied and reproduced. The detection process or mechanism reads each of the watermark and compares their characteristics. While wear and handling may change the characteristics of the digital watermarks in a document, the relationship between the characteristic of multiple digital watermarks in a document will never-the-less give an indication as to whether a document is an original or a copy of an original.
摘要:
In one aspect of the invention, a digital watermark detector comprises a memory buffer for managing an incoming stream of data. The detector includes logic for transferring overlapping data blocks from the memory buffer to a frequency domain transform processor, such as an FFT processor. The frequency domain transform processor including logic to re-use frequency domain transform operation results for overlapping portions of the data blocks. In another aspect of the invention, a digital watermark detector comprises a memory buffer for a block of data, and pipelined watermark processor segments. The segments each perform different watermark detector operations in series. These segments concurrently operate on different data segments of the block of data in a processing pipeline. One embodiment employs pipelined processors for setting up data for subsequent detecting stages, such as pipelined data conversion, re-sampling, pre-filtering and frequency domain transforms. Alternative embodiments pipeline data transformations, correlation operations (e.g., matched filter operations) etc. Data flows through the processing pipeline until it reaches a critical point. At stages before the critical point, data may be dropped as not likely to include digital watermark data. This pruning of data helps reduce un-needed processing and/or false positives of watermark detection.
摘要:
Colored images are divided into color planes and watermarks are inserted into the individual color planes. One or more watermarks can be inserted into one or more of the color planes. In order to print a color image the image is divided into color planes corresponding to the colors of ink used for printing. A separate plate is used to print each color. The different plates must be precisely aligned. Any misalignment will cause blurring in the image and may make it difficult or impossible to read a watermark in the image. Misalignment of the plates can cause the watermark data in one color plane to, in effect, cancel out the watermark data in a different color plane. With the present invention a watermark is inserted into a selected color plane only, thus there is no cancellation due to misalignment of color plates. The watermark detection and reading can be done after the image is divided into color planes.