Abstract:
A method of bonding includes applying a glass composition to at least a first material surface. The glass composition includes a glass powder and a solvent. The first material surface is disposed onto a second material surface. An elevated temperature is applied to the first material surface and the second material surface to form a bond between the first material surface and the second material surface. The first material surface and the second material surface are compressed under an isostatic pressure.
Abstract:
Various embodiments disclosed relate to an optical window including an infrared light transmissive optical material. The optical material includes a first ceramic phase including a first ceramic material and a first dopant distributed therein. The optical material further includes a second ceramic phase homogenously intermixed with the first ceramic phase and comprising a second ceramic material and a second dopant distributed therein. The first dopant increases the refractive index of the first ceramic material and the second dopant decreases the refractive index of the second ceramic material. The first dopant and the second dopant are present in an amount such that a difference in a refractive index of the first ceramic phase and of the second ceramic phase is in a range of from about 0.001 to about 0.2.
Abstract:
A method of making a scintillator material includes forming a dried ceramic composition into a ceramic body with a garnet crystal formula (Gd3-x-zYx)Cez(Ga5-yAly)O12, where x is about 0 to about 2, y is about 0 to about 5, and z is about 0.001 to about 1.0. The ceramic body is sintered to form a sintered ceramic body. The sintered ceramic body is surrounded by a powder mixture that includes a garnet powder. The density of the sintered ceramic body is increased by applying an increased temperature and isostatic pressure to form the scintillator material.
Abstract:
Methods and apparatus for a frequency selective limiter (FSL) having a magnetic material substrate that tapers in thickness and supports a transmission line that has segments and bends. The segments, which differ in width and are substantially parallel to each other, such that each segment traverses the substrate on a constant thickness of the substrate.
Abstract:
Various embodiments disclosed relate to an optical window including an infrared light transmissive optical material. The optical material includes a first ceramic phase including a first ceramic material and a first dopant distributed therein. The optical material further includes a second ceramic phase homogenously intermixed with the first ceramic phase and comprising a second ceramic material and a second dopant distributed therein. The first dopant increases the refractive index of the first ceramic material and the second dopant decreases the refractive index of the second ceramic material. The first dopant and the second dopant are present in an amount such that a difference in a refractive index of the first ceramic phase and of the second ceramic phase is in a range of from about 0.001 to about 0.2.
Abstract:
A method of bonding includes applying a glass composition to at least a first material surface. The glass composition includes a glass powder and a solvent. The first material surface is disposed onto a second material surface. An elevated temperature is applied to the first material surface and the second material surface to form a bond between the first material surface and the second material surface. The first material surface and the second material surface are compressed under an isostatic pressure.
Abstract:
A nanocomposite optical ceramic (NCOC) material. The material having a first solid phase, a second solid phase, and a third solid phase. The first solid phase has first solid phase grains no larger than 5 μm, and each first solid phase grain has a first solid phase grain boundary. The second solid phase has second solid phase grains no larger than 5 μm, and each second solid phase grain has a second solid phase grain boundary. The third solid phase has a doping agent. The doping agent is less than 5 atomic % soluble in the first solid phase and the second solid phase. At least part of the third solid phase is situated at the second solid phase grain boundary.
Abstract:
Methods and apparatus for a frequency selective limiter (FSL) having a magnetic material substrate that tapers in thickness and supports a transmission line that has segments and bends. The segments, which differ in width and are substantially parallel to each other, such that each segment traverses the substrate on a constant thickness of the substrate.
Abstract:
A solid solution-based optical material capable of transmitting infrared light, the solid solution-based optical material comprising at least two nano-sized phases intermixed in one another, wherein at least one of the at least two nano-sized phases is a solid solution containing a dissolved dopant, the dissolved dopant present in an amount sufficient to reduce a refractive index difference between the at least two nano-sized phases to about 0.2 or less when infrared light is being transmitted. Various embodiments are directed to related systems and methods. In one embodiment, the infrared light is visible infrared light, short-wave infrared light, eye safe infrared light, medium wave infrared light, long wave infrared red light, or combinations thereof.
Abstract:
A nanocomposite optical ceramic (NCOC) material. The material having a first solid phase, a second solid phase, and a third solid phase. The first solid phase has first solid phase grains no larger than 5 μm, and each first solid phase grain has a first solid phase grain boundary. The second solid phase has second solid phase grains no larger than 5 μm, and each second solid phase grain has a second solid phase grain boundary. The third solid phase has a doping agent. The doping agent is less than 5 atomic % soluble in the first solid phase and the second solid phase. At least part of the third solid phase is situated at the second solid phase grain boundary.