摘要:
The disclosure describes techniques for forming nanoparticles including Fe16N2 phase. In some examples, the nanoparticles may be formed by first forming nanoparticles including iron, nitrogen, and at least one of carbon or boron. The carbon or boron may be incorporated into the nanoparticles such that the iron, nitrogen, and at least one of carbon or boron are mixed. Alternatively, the at least one of carbon or boron may be coated on a surface of a nanoparticle including iron and nitrogen. The nano particle including iron, nitrogen, and at least one of carbon or boron then may be annealed to form at least one phase domain including at least one of Fe16N2, Fe16(NB)2, Fe16(NC)2, or Fe16(NCB)2.
摘要:
A method may include annealing a material including iron and nitrogen in the presence of an applied magnetic field to form at least one Fe16N2 phase domain. The applied magnetic field may have a strength of at least about 0.2 Tesla (T).
摘要翻译:一种方法可以包括在施加的磁场的存在下退火包括铁和氮的材料以形成至少一个Fe 16 N 2相域。 施加的磁场可以具有至少约0.2特斯拉(T)的强度。
摘要:
A method may include annealing a material including iron and nitrogen in the presence of an applied magnetic field to form at least one Fe16N2 phase domain. The applied magnetic field may have a strength of at least about 0.2 Tesla (T).
摘要:
A method may include annealing a material including iron and nitrogen in the presence of an applied magnetic field to form at least one Fe16N2 phase domain. The applied magnetic field may have a strength of at least about 0.2 Tesla (T).
摘要:
A method may include annealing a material including iron and nitrogen in the presence of an applied magnetic field to form at least one Fe16N2 phase domain. The applied magnetic field may have a strength of at least about 0.2 Tesla (T).
摘要:
The disclosure describes techniques for forming nanoparticles including Fe16N2 phase. In some examples, the nanoparticles may be formed by first forming nanoparticles including iron, nitrogen, and at least one of carbon or boron. The carbon or boron may be incorporated into the nanoparticles such that the iron, nitrogen, and at least one of carbon or boron are mixed. Alternatively, the at least one of carbon or boron may be coated on a surface of a nanoparticle including iron and nitrogen. The nano particle including iron, nitrogen, and at least one of carbon or boron then may be annealed to form at least one phase domain including at least one of Fe16N2, Fe16(NB)2, Fe16(NC)2, or Fe16(NCB)2.