摘要:
An optical waveguide circuit includes: a lower cladding layer formed on a substrate; a first optical waveguide formed on the lower cladding layer so as to partition the lower cladding layer into a first portion and a second portion; a second optical waveguide formed on the first portion, the second optical waveguide including a tip end portion directed toward a side face of the first optical waveguide, the tip end portion being narrowed in a tapered manner; and a third optical waveguide formed on the second portion, the third optical waveguide including a tip end portion directed toward the tip end portion of the second optical waveguide, a tip end portion of the third optical waveguide being narrowed in a tapered manner.
摘要:
An optical waveguide circuit includes: a lower cladding layer formed on a substrate; a first optical waveguide formed on the lower cladding layer so as to partition the lower cladding layer into a first portion and a second portion; a second optical waveguide formed on the first portion, the second optical waveguide including a tip end portion directed toward a side face of the first optical waveguide, the tip end portion being narrowed in a tapered manner; and a third optical waveguide formed on the second portion, the third optical waveguide including a tip end portion directed toward the tip end portion of the second optical waveguide, a tip end portion of the third optical waveguide being narrowed in a tapered manner.
摘要:
It makes possible to inject a current into the current confinement region substantially uniformly. A surface emitting type optical semiconductor device includes a semiconductor active layer provided above a substrate; a first and second reflecting mirror layers sandwiching the semiconductor active layer to form an optical cavity in a direction perpendicular to the substrate; a plurality of current confinement regions provided in the second reflecting mirror layer so as to be separated by an impurity region having impurities; a semiconductor current diffusion layer provided on the second reflecting mirror layer so as to cover the current confinement regions; and an electrode portion which injects a current into the semiconductor active layer. The electrode portion comprising a first electrode provided on the semiconductor current diffusion layer so as to surround the current confinement regions and a second electrode provided on an opposite side of the substrate from the semiconductor active layer.
摘要:
It makes possible to inject a current into the current confinement region substantially uniformly. A surface emitting type optical semiconductor device includes a semiconductor active layer provided above a substrate; a first and second reflecting mirror layers sandwiching the semiconductor active layer to form an optical cavity in a direction perpendicular to the substrate; a plurality of current confinement regions provided in the second reflecting mirror layer so as to be separated by an impurity region having impurities; a semiconductor current diffusion layer provided on the second reflecting mirror layer so as to cover the current confinement regions; and an electrode portion which injects a current into the semiconductor active layer. The electrode portion comprising a first electrode provided on the semiconductor current diffusion layer so as to surround the current confinement regions and a second electrode provided on an opposite side of the substrate from the semiconductor active layer.
摘要:
It makes possible to inject a current into the current confinement region substantially uniformly. A surface emitting type optical semiconductor device includes a semiconductor active layer provided above a substrate; a first and second reflecting mirror layers sandwiching the semiconductor active layer to form an optical cavity in a direction perpendicular to the substrate; a plurality of current confinement regions provided in the second reflecting mirror layer so as to be separated by an impurity region having impurities; a semiconductor current diffusion layer provided on the second reflecting mirror layer so as to cover the current confinement regions; and an electrode portion which injects a current into the semiconductor active layer. The electrode portion comprising a first electrode provided on the semiconductor current diffusion layer so as to surround the current confinement regions and a second electrode provided on an opposite side of the substrate from the semiconductor active layer.
摘要:
It makes possible to inject a current into the current confinement region substantially uniformly. A surface emitting type optical semiconductor device includes a semiconductor active layer provided above a substrate; a first and second reflecting mirror layers sandwiching the semiconductor active layer to form an optical cavity in a direction perpendicular to the substrate; a plurality of current confinement regions provided in the second reflecting mirror layer so as to be separated by an impurity region having impurities; a semiconductor current diffusion layer provided on the second reflecting mirror layer so as to cover the current confinement regions; and an electrode portion which injects a current into the semiconductor active layer. The electrode portion comprising a first electrode provided on the semiconductor current diffusion layer so as to surround the current confinement regions and a second electrode provided on an opposite side of the substrate from the semiconductor active layer.
摘要:
According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer, an active layer, and a second semiconductor layer. The first layer has a first upper surface and a first side surface. The active layer has a first portion covering the first upper surface and having a second upper surface, and a second portion covering the first side surface and having a second side surface. The second layer has a third portion covering the second upper surface, and a fourth portion covering the second side surface. The first and second layers include a nitride semiconductor. The first portion along a stacking direction has a thickness thicker than the second portion along a direction from the first side surface toward the second side surface. The third portion along the stacking direction has a thickness thicker than the fourth portion along the direction.
摘要:
A light emitter according to one embodiment has a fiber shape. And it includes a core portion containing a light emitting material, the material absorbing excitation light and emitting light having a wavelength longer than a wavelength of the excitation light. And also it includes a clad portion provided outside the core portion, the clad portion having a first region and second regions, the second regions being periodically formed in the first region, the second regions having a refractive index higher than a refractive index of a first region, the refractive index of the first region being equal to or higher than a refractive index of the core portion.
摘要:
A low-cost high-property optical semiconductor element for a long wavelength is provided, using a GaAs substrate. The optical semiconductor element comprises a substrate of GaAs having a first surface and a second surface opposite to each other, a buffer layer of InjGa1-jAs1-kNk (0≦j≦1, 0.002≦k≦0.05) formed on the first surface of the substrate, a first conductive type clad layer formed on the buffer layer, an active layer formed on the first conductive type clad layer and comprising a well layer of InzGa1-zAs (0≦z≦1), the well layer having a smaller bandgap than the first conductive type clad layer, the active layer having a thickness of more than its critical thickness for the substrate based upon equilibrium theories, and a second conductive type clad layer formed on the active layer and having a larger bandgap than the well layer.
摘要翻译:使用GaAs衬底提供了用于长波长的低成本高性能光学半导体元件。 该光学半导体元件包括具有彼此相对的第一表面和第二表面的GaAs衬底,具有第一表面和第二表面的第二表面, 形成在基板的第一表面上的1-k N N(0 <= j <= 1,0.002 <= k <= 0.05),形成在基板的第一表面上的第一导电型覆盖层 所述缓冲层,形成在所述第一导电型覆盖层上的有源层,并且包括阱层,所述阱层具有In(z) ),所述阱层具有比所述第一导电型覆盖层更小的带隙,所述有源层的厚度大于其基于平衡理论的基板的临界厚度,以及形成在所述有源层上的第二导电型覆盖层和 具有比阱层更大的带隙。
摘要:
According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer, a well layer, a barrier layer, an Al-containing layer, and an intermediate layer. The p-type semiconductor layer is provided on a side of [0001] direction of the n-type semiconductor layer. The well layer, the barrier layer, the Al-containing layer and the intermediate layer are disposed between the n-type semiconductor layer and the p-type semiconductor layer subsequently. The Al-containing layer has a larger band gap energy than the barrier layer, a smaller lattice constant than the n-type semiconductor layer, and a composition of Alx1Ga1-x1-y1Iny1N. The intermediate layer has a larger band gap energy than the well layer, and has a first portion and a second portion provided between the first portion and the p-type semiconductor layer. A band gap energy of the first portion is smaller than that of the second portion.
摘要翻译:根据一个实施例,半导体发光器件包括n型半导体层,p型半导体层,阱层,阻挡层,含Al层和中间层。 p型半导体层设置在n型半导体层的[0001]方向的一侧。 阱层,阻挡层,含Al层和中间层随后设置在n型半导体层和p型半导体层之间。 含Al层具有比阻挡层更大的带隙能量,比n型半导体层更小的晶格常数以及Al x Ga 1-x 1-y 1 In y N 1的组成。 中间层具有比阱层更大的带隙能量,并且具有设置在第一部分和p型半导体层之间的第一部分和第二部分。 第一部分的带隙能量小于第二部分的带隙能量。