摘要:
It makes possible to inject a current into the current confinement region substantially uniformly. A surface emitting type optical semiconductor device includes a semiconductor active layer provided above a substrate; a first and second reflecting mirror layers sandwiching the semiconductor active layer to form an optical cavity in a direction perpendicular to the substrate; a plurality of current confinement regions provided in the second reflecting mirror layer so as to be separated by an impurity region having impurities; a semiconductor current diffusion layer provided on the second reflecting mirror layer so as to cover the current confinement regions; and an electrode portion which injects a current into the semiconductor active layer. The electrode portion comprising a first electrode provided on the semiconductor current diffusion layer so as to surround the current confinement regions and a second electrode provided on an opposite side of the substrate from the semiconductor active layer.
摘要:
It makes possible to inject a current into the current confinement region substantially uniformly. A surface emitting type optical semiconductor device includes a semiconductor active layer provided above a substrate; a first and second reflecting mirror layers sandwiching the semiconductor active layer to form an optical cavity in a direction perpendicular to the substrate; a plurality of current confinement regions provided in the second reflecting mirror layer so as to be separated by an impurity region having impurities; a semiconductor current diffusion layer provided on the second reflecting mirror layer so as to cover the current confinement regions; and an electrode portion which injects a current into the semiconductor active layer. The electrode portion comprising a first electrode provided on the semiconductor current diffusion layer so as to surround the current confinement regions and a second electrode provided on an opposite side of the substrate from the semiconductor active layer.
摘要:
It makes possible to inject a current into the current confinement region substantially uniformly. A surface emitting type optical semiconductor device includes a semiconductor active layer provided above a substrate; a first and second reflecting mirror layers sandwiching the semiconductor active layer to form an optical cavity in a direction perpendicular to the substrate; a plurality of current confinement regions provided in the second reflecting mirror layer so as to be separated by an impurity region having impurities; a semiconductor current diffusion layer provided on the second reflecting mirror layer so as to cover the current confinement regions; and an electrode portion which injects a current into the semiconductor active layer. The electrode portion comprising a first electrode provided on the semiconductor current diffusion layer so as to surround the current confinement regions and a second electrode provided on an opposite side of the substrate from the semiconductor active layer.
摘要:
It makes possible to inject a current into the current confinement region substantially uniformly. A surface emitting type optical semiconductor device includes a semiconductor active layer provided above a substrate; a first and second reflecting mirror layers sandwiching the semiconductor active layer to form an optical cavity in a direction perpendicular to the substrate; a plurality of current confinement regions provided in the second reflecting mirror layer so as to be separated by an impurity region having impurities; a semiconductor current diffusion layer provided on the second reflecting mirror layer so as to cover the current confinement regions; and an electrode portion which injects a current into the semiconductor active layer. The electrode portion comprising a first electrode provided on the semiconductor current diffusion layer so as to surround the current confinement regions and a second electrode provided on an opposite side of the substrate from the semiconductor active layer.
摘要:
It is made possible to obtain high performance having high controllability in polarization mode even when a vertical cavity surface emitting laser diode is fabricated on an ordinary substrate with a plane orientation (100) plane or the like. A vertical cavity surface emitting laser diode includes: a substrate; a semiconductor active layer which is formed on the substrate and has a light emitting region; a first reflecting mirror and a second reflecting mirror sandwiching the semiconductor active layer; a first recess which has a first groove depth penetrating at least the semiconductor active layer from the outermost layer of the first reflecting mirror; a second recess having a second groove depth shallower than the first groove depth; a mesa portion which is surrounded by the first and second recesses; and an insulating film which is buried in the first recess.
摘要:
In a vertical cavity surface emitting laser diode manufactured on a non-off-angle substrate with a (100)-oriented plane or the like, anisotropic stress is applied to a central portion of an active layer by forming a asymmetrical oxidation structure in an Al high concentration portion in the mesa, so that polarization controllability of a device can be improved.
摘要:
A vertical-cavity surface emitting laser diode comprises: a first and a second reflectors; an active layer provided between the first and the second reflectors; and an oxidizee layer having a non-oxidized part and an oxidized part provided around the non-oxidized part. An electric current is injected into the non-oxidized part. The oxidizee layer has a proton-containing part including proton at least at a position substantially enclosing the non-oxidized part.
摘要:
In a vertical cavity surface emitting laser diode manufactured on a non-off-angle substrate with a (100)-oriented plane or the like, anisotropic stress is applied to a central portion of an active layer by forming a asymmetrical oxidation structure in an Al high concentration portion in the mesa, so that polarization controllability of a device can be improved.
摘要:
An optical waveguide circuit includes: a lower cladding layer formed on a substrate; a first optical waveguide formed on the lower cladding layer so as to partition the lower cladding layer into a first portion and a second portion; a second optical waveguide formed on the first portion, the second optical waveguide including a tip end portion directed toward a side face of the first optical waveguide, the tip end portion being narrowed in a tapered manner; and a third optical waveguide formed on the second portion, the third optical waveguide including a tip end portion directed toward the tip end portion of the second optical waveguide, a tip end portion of the third optical waveguide being narrowed in a tapered manner.
摘要:
An optical waveguide circuit includes: a lower cladding layer formed on a substrate; a first optical waveguide formed on the lower cladding layer so as to partition the lower cladding layer into a first portion and a second portion; a second optical waveguide formed on the first portion, the second optical waveguide including a tip end portion directed toward a side face of the first optical waveguide, the tip end portion being narrowed in a tapered manner; and a third optical waveguide formed on the second portion, the third optical waveguide including a tip end portion directed toward the tip end portion of the second optical waveguide, a tip end portion of the third optical waveguide being narrowed in a tapered manner.