摘要:
An apparatus and method for optically detecting the presence of an analyte in a solution is presented. An embodiment comprises a waveguide resonator that is optically coupled to a fluid in a fluidic conduit so that the resonant wavelength of the waveguide resonator is based on the refractive index of the fluid.
摘要:
An apparatus and method for optically detecting the presence of an analyte in a solution is presented. An embodiment comprises a waveguide resonator that is optically coupled to a fluid in a fluidic conduit so that the resonant wavelength of the waveguide resonator is based on the refractive index of the fluid.
摘要:
An apparatus and method for optically detecting the presence of an analyte in a solution is presented. An embodiment comprises a waveguide resonator that is optically coupled to a fluid in a fluidic conduit so that the resonant wavelength of the waveguide resonator is based on the refractive index of the fluid.
摘要:
An apparatus and method for optically detecting the presence of an analyte in a solution is presented. An embodiment comprises a waveguide resonator that is optically coupled to a fluid in a fluidic conduit so that the resonant wavelength of the waveguide resonator is based on the refractive index of the fluid.
摘要:
An apparatus and method for optically detecting the presence of an analyte in a solution is presented. An embodiment comprises a waveguide resonator that is optically coupled to a fluid in a fluidic conduit so that the resonant wavelength of the waveguide resonator is based on the refractive index of the fluid.
摘要:
An apparatus and method for optically detecting the presence of an analyte in a solution is presented. An embodiment comprises a waveguide resonator that is optically coupled to a fluid in a fluidic conduit so that the resonant wavelength of the waveguide resonator is based on the refractive index of the fluid.
摘要:
The present invention relates to an integrated electronic-microfluidic device an integrated electronic-microfluidic device, comprising a semiconductor substrate (106) on a first (122) support, an electronic circuit (102, 104) on a first semiconductor-substrate side of the semiconductor substrate, and a signal interface structure to an external device. The signal interface structure is arranged on the first semiconductor-substrate side and configured to receive electrical signals from the electronic circuit. A microfluidic structure (126) is formed in the semiconductor substrate, and is configured to confine a fluid and to allow a flow of the fluid to and from the microfluidic structure only on a second semiconductor-substrate side that is opposite to the first semiconductor-substrate side and faces away form the first support. The electronic-microfluidic device forms a flexible platform for the formation of various System-in-Package applications. It achieves a clear separation between electrical and wet-chemical interfaces. The claimed method for fabricating the device of the invention also allows a simple formation of thermally isolated microfluidic structures.
摘要:
An elongate device (e.g. a catheter) for interventional MRI has one or more passive LC-circuits (wireless markers) attached to its distal tip portion for position tracking. The LC-circuits comprise an inductor winding (480) and a three-dimensional “trench” capacitor (420-440) and are integrated in a piece of silicon (410). Optical fibres may be included in the device for optical probing of tissue surrounding the distal tip portion.
摘要:
Disclosed is a device for determining the cardiotoxicity of a chemical compound, comprising a substrate (10) carrying a deformable stack (34), said stack being partially detached from the substrate by a cavity (32) allowing an out-of-plane deformation of the stack, said stack comprising a first deformable layer (16), a second deformable layer (20) and a multi-electrode structure (18) sandwiched between the first and second deformable layers, the second deformable layer carrying a pattern of cardiomyocytes (28) adhered thereto; and a liquid container (26) mounted on the substrate for exposing the cardiomyocytes to the chemical compound. A method of manufacturing such a device is also disclosed. The present invention further relates to the use of the device for drug target discovery and/or drug development and a method for developing a disease model for a disease that is caused by or modified by stretching of cells, in particular a cardiac disease model.
摘要:
An integrated-circuit device includes a rigid substrate island having a main substrate surface with a circuit region circuit elements and at least one fold structure. The fold structure is attached to the substrate island and is unfoldable from a relaxed, folded state to a strained unfolded state. The fold structure contains at least one passive electrical component. The fold structure further has in its folded state at least one surface with an area vector that includes a non-vanishing area-vector component in a direction parallel to the main substrate surface, which area-vector component is diminished or vanishes when deforming the fold structure from the folded into the unfolded state.