Abstract:
An apparatus for delivering a flow of breathable gas to a patient for the treatment of Sleep Disordered Breathing (SDB) that is less obtrusive includes a nasal cannula, cannulae (2a, 2b), prongs, or pillows and may be sealed or unsealed with the nares of the patient in use. The cannula, pillows or prongs may be positioned on the face of the patient by a headgear (6). The cannula, pillows or prongs may be smaller, lighter, and/or less visible than other nasal cannula, cannulae, pillows or prongs and may therefore be less obtrusive to the patient.
Abstract:
A flexible tape heater (110) in a patient conduit (112) may be used to heat the flow of gas in the patient conduit (112) that is delivered to the patient mask (116). The thin, flat and extended nature of the flexible tape heater (110) may enhance heat transfer with the gas flow whilst also providing low impedance to the gas flow. Heating of the gas may facilitate the desired temperature and humidity to be reached for the gas delivered to the patient by the respiratory apparatus. The flexible tape heater (110) may be placed in the patient conduit (112) such that the flexible tape heater (110) is twisted or bent about one or more of the flexible tape heater's (110) three axes. Additionally these configurations may be used to enhance the turbulent mixing of the water vapour produced in the humidification chamber (114) with the gas flow.
Abstract:
An apparatus for delivering breathable gas to a patient includes a flow generator to generate a flow of breathable gas; a humidifier chamber to contain a supply of water; a first flow path to deliver the flow of breathable gas from the flow generator to the humidifier chamber; a second flow path to deliver the flow of breathable gas from the humidifier chamber to a patient interface; and a wicking element and/or a flat, elongate heating element provided at least in the humidifier chamber. A method of delivering a flow of breathable gas to a patient includes generating a flow of breathable gas; and humidifying the flow by passing the flow over a supply of water. Humidifying the flow includes heating the supply of water and/or the flow with a heating element in thermal contact with the water and/or the flow before passing the supply of water, the flow over the supply of water, and/or the flow after passing the supply of water; and controlling a voltage applied to the heating element to control the humidity of the flow. A tube for use in delivering a flow of breathable gas to a patient includes a circuit including electrically conductive ink provided on an inner surface and/or an outer surface.
Abstract:
A gas conduit for respiratory apparatus includes a lumen for passage of a breathable gas to a patient and a flexible conduit wall surrounding the lumen. The flexible conduit wall has a humidification apparatus for delivering water vapour into the gas passing through the lumen.
Abstract:
A humidifying apparatus utilizing a semi-permeable membrane portion within a gas conduit where the direction of gas flow within a central lumen is given by an arrow. The humidification apparatus has a helical configuration for the semi-permeable membrane portion, a structural reinforcing member or members, a water channel and a heating element. The helical configuration of an outer wall may be similar to conventional conduits that are in common use in respiratory apparatus. Thus the humidification apparatus may be readily substituted into existing respiratory device by exchanging the gas conduit.
Abstract:
A mask assembly for delivering pressurized gas to a patient comprising a mask having an inspiratory port and an expiratory port located on generally opposite sides, wherein said ports are sized, oriented, positioned, and/or spaced apart a sufficient distance to allow a cross-flow of pressurized gas to flow through the mask assembly; an outlet limb connected to the expiratory port and having an aperture in pneumatic communication with the breathing chamber; the aperture size being variable between a first, open configuration and at least one second configuration that is different from the first. A ventilation system for delivering pressurized gas to a patient comprising a seal formed with the patient's airways and in pneumatic communication with a plenum chamber; an exchanger positioned at least partially within the plenum chamber, and in pneumatic communication with inspiratory and expiratory flow paths, to recover heat and/or moisture from gas exhaled by the patient.
Abstract:
A respiratory apparatus for delivering breathable gas to a patient includes a flow generator that generates a supply of pressurised gas to be delivered to the patient; a humidifier for vaporising water and delivering water vapor to humidify the gas; a gas flow path leading from the flow generator to the humidifier and from the humidifier to a patient interface; and a heater in thermal contact with the gas and/or the water, wherein the heater comprises an elongate heating filament in the form of a tape. A humidifier for respiratory apparatus includes a first respiratory gas passage for receiving gas from a flow generator, a humidifier chamber, a second respiratory gas passage for delivering humidified gas to a patient interface, and a heater in thermal contact with the gas and/or the water, wherein the heater comprises an elongate heating filament extending along at least part of both said first and second respiratory gas passages. A conduit for use in a respiratory apparatus for delivering breathable gas to a patient includes a tube; a helical rib on an outer surface of the tube; and a plurality of wires supported by the helical rib in contact with the outer surface of the tube.