摘要:
Methods, systems, and related computer program products for are described for non-invasive detection of intracranial pressure (ICP) variations in an intracranial compartment of a patient. Optical radiation is propagated transcranially into the intracranial compartment, and optical radiation that has migrated through at least a portion of the intracranial compartment and back out of the cranium is detected. At least one signal representative of the detected optical radiation is processed to extract therefrom at least one component signal that varies in time according to at least one of an intrinsic physiological oscillation and an externally driven oscillation in the patient. Examples of suitable intrinsic physiological oscillations include intrinsic respiratory and cardiac oscillations. Examples of suitable externally driven oscillations include ventilated respiratory oscillations and externally mechanically induced oscillations. The extracted component signal is then processed to generate an output signal representative of the ICP variations in the intracranial compartment.
摘要:
Methods, systems, and related computer program products for optically monitoring a chromophore level in a body part of a patient are described. An optical source introduces optical radiation into the body part, and an optical detector receives optical radiation that has propagated through at least a portion of the body part and produces a first signal representative of the received optical radiation. The first signal is processed to produce a chromophore level metric, which is output on a user display, and is further processed to produce a second signal known to exhibit measurably significant timewise fluctuations corresponding to at least one intrinsic physiological oscillation of the patient when the optical source and the optical detector are in proper optical coupling with the body part. An error condition indication is provided if the measurably significant timewise fluctuations are not present in the second signal.
摘要:
A device for non-invasively measuring at least one parameter of a cardiac blood vessel in a patient is provided. The device comprises at least one light source that emits light in the 400 nm to 1000 nm wavelength range; at least one photodetector adapted to receive light emitted by the light source and generate an output based on the received light, wherein said light is reflected from or transmitted through tissue of the patient, the output of said photodetector being correlated with a parameter of the blood vessel; and at least one probe for facilitating delivery of light from the light source to an external tissue site on the patient in the proximity of the cardiac blood vessel and receipt of light by the photodetector. A system and methods of monitoring/measuring cardiac parameters utilizing the device and/or system are also provided.
摘要:
The present invention generally relates to optical imaging systems and methods for providing images of two-dimensional and/or three-dimensional distribution of properties of chromophores in various physiological media. More particularly, the present invention relates to optical imaging systems, optical probes thereof, and methods therefor utilizing self-calibration of their output signals. A typical self-calibrating optical imaging system includes at least one wave source, at least one wave detector, a signal analyzer, a signal processor, and an image processor. The signal analyzer receives, from the wave detector, an output signal representative of the distribution of the chromophores or their properties in target areas of the medium. The signal analyzer analyzes amplitudes of the output signal and selects multiple points of the output signal having substantially similar amplitudes. The signal processor calculates a baseline corresponding to a representative amplitude of the similar amplitudes and provides a self-calibrated output signal. The image processor constructs the images of the distribution of the chromophores or their properties from the self-calibrated first output signals.
摘要:
Methods, systems, and related computer program products for non-invasive monitoring of a biological volume, such as a human brain, are described. In one preferred embodiment, each of a plurality of optical sources emits optical radiation into the biological volume each of a plurality of optical detectors detects optical radiation impinging thereupon from the biological volume. The optical measurements are processed to compute a requisite property value associated with each source-detector pair. For each source-detector pair, a volumetric basis region corresponding thereto is weighted by the requisite property value, the volumetric basis region being predetermined and representative of an estimated subvolume of the biological volume encountered by optical radiation emitted from that source and propagating to that detector. The weighted volumetric basis regions are accumulated into a volumetric cumulative array, and a display output is generated based at least in part on the volumetric cumulative array.
摘要:
The present invention relates to a non-invasive optical system equipped with optical tomographic scanning method and algorithm for quantifying scattering and absorption properties and chromophore concentrations of highly scattering medium such as biological tissues, for 3D mapping and imaging reconstruction of the spatial and temporal variations in such properties. The invention further relates to a method and an apparatus for simultaneous measurement of concentrations of biochemical substances and blood oxygen saturation inside a biological tissue and arterial blood.
摘要:
A method and system are provided which are useful for the non-invasive determination and monitoring of cerebral tissue oxygenation. The method comprises the steps of generating at least first and second jugular venous output signals against time based on the reflection of at least first and second wavelengths of light, respectively, from an external tissue site on the patient in the proximity of the internal jugular vein; obtaining corresponding first and second cardiac arterial output signals for the first and second wavelengths of light, respectively, from the patient, and separating the first and second cardiac arterial output signals from the first and second jugular venous output signals, respectively, to generate first and second cerebral venous output signals; and determining cerebral tissue oxygenation based on the first and second cerebral venous output signals. A system useful to monitor cerebral tissue oxygenation may comprise a first module for optically generating at least first and second jugular venous output signals against time at at least first and second wavelengths of light, respectively, from the patient; a second module for generating first and second cardiac arterial output signals at the first and second wavelengths of light, respectively, from the patient; and a signal processing means adapted to separate the first and second cardiac arterial output signals from the first and second jugular venous output signals, respectively, to yield first and second cerebral venous output signals, for the determination of cerebral tissue oxygenation.
摘要:
Medical diagnostic system, apparatus and methods are disclosed. Optical transmitters generate radiation-containing photons having a specific interaction with at least one target chromophore in a target structure, preferably a blood vessel such as the interior jugular vein. The optical transmitters transmit the radiation into at least a first area including a substantial portion of the target structure and into a second area not including a substantial portion of the target structure. Optical receivers detect a portion radiation scattered from at least the first area and the second area. A processor estimates oxygenation, pH or cardiac output based on the scattered radiation detected from the first area, and the scattered radiation from the second area.
摘要:
Medical diagnostic system, apparatus and methods are disclosed. Optical transmitters generate radiation-containing photons having a specific interaction with at least one target chromophore in a target structure, preferably a blood vessel such as the interior jugular vein. The optical transmitters transmit the radiation into at least a first area including a substantial portion of the target structure and into a second area not including a substantial portion of the target structure. Optical receivers detect a portion radiation scattered from at least the first area and the second area. A processor estimates oxygenation, pH or cardiac output based on the scattered radiation detected from the first area, and the scattered radiation from the second area.
摘要:
The present invention relates to a non-invasive optical system equipped with optical tomographic scanning method and algorithm for quantifying scattering and absorption properties and chromophore concentrations of highly scattering medium such as biological tissues, for 3D mapping and imaging reconstruction of the spatial and temporal variations in such properties. The invention further relates to a method and an apparatus for simultaneous measurement of concentrations of biochemical substances and blood oxygen saturation inside a biological tissue and arterial blood.