摘要:
A lithography apparatus includes a projection system configured to project a radiation beam onto a substrate, a detector configured to inspect the substrate, and a substrate table configured to support the substrate and move the substrate relative to the projection system and the detector. The detector is arranged to inspect a portion of the substrate while the substrate is moved and before the portion is exposed to the radiation beam.
摘要:
A lithography apparatus includes a projection system configured to project a radiation beam onto a substrate, a detector configured to inspect the substrate, and a substrate table configured to support the substrate and move the substrate relative to the projection system and the detector. The detector is arranged to inspect a portion of the substrate while the substrate is moved and before the portion is exposed to the radiation beam.
摘要:
In an embodiment, a lithographic apparatus is disclosed that includes a modulator configured to expose an exposure area of the substrate to a plurality of beams modulated according to a desired pattern and a projection system configured to project the modulated beams onto the substrate. The modulator may be moveable with respect the exposure area and/or the projection system may have an array of lenses to receive the plurality of beams, the array of lenses moveable with respect to the exposure area.
摘要:
Provided is a radiation distribution system for distributing the radiation from an illumination system to two or more patterning means, each for patterning beams of radiation, which are subsequently projected onto a substrate.
摘要:
A lithographic apparatus comprises an illumination system for supplying a beam of radiation, a patterning arrangement incorporating an array of individually controllable elements for imparting a pattern to the beam cross-section, a substrate table for supporting a substrate, and a projection system incorporating a microlens array for projecting the beam onto a target portion of the substrate. An error compensator is provided for supplying error correction values for compensating for the effect of positional errors in the microlens array, and a grey scale modulator is provided for supplying drive signals to controllable elements of the patterning arrangement in dependence on the error correction values in order to compensate for the effect of positional errors in the microlens array by varying the intensity of some parts of the pattern relative to other parts of the pattern.
摘要:
Provided is a method and system for facilitating use of a plurality of individually controllable elements to modulate the intensity of radiation received at each focusing element of an array of focusing elements to control the intensity of the radiation in the areas on the substrate onto which the focusing elements direct the radiation.
摘要:
A projection system for a lithographic apparatus having a plurality of mirror imaging systems. In an embodiment, the mirror imaging systems are arranged in two rows with each row being perpendicular to a scanning direction of the projection system. Each mirror imaging systems has an associated imaging field. The mirror imaging systems are arranged in a manner that precludes gaps between adjacent imaging fields in the scanning direction. Each mirror imaging system includes a concave mirror and a convex mirror arranged concentrically with the concave mirror. The concave mirrors have a first mirror portion and a second mirror portion that are independently movable. In one embodiment, each of the mirror imaging systems has an associated phase, and the mirror imaging systems in one row are positioned 180 degrees out of phase with the mirror imaging systems in the other row.
摘要:
A lithographic apparatus and method for exposing a substrate. An illumination system supplies a series of beams of radiation that are patterned by an array of individually controllable elements. The patterned beams are projected through arrays of lenses onto target portions of a substrate. Each lens in the arrays directs a respective part of the patterned beam towards the substrate. A displacement system causes relative displacement between the substrate and the beam, such that the beams are scanned across the substrate in a predetermined scanning direction. The projection systems are positioned so that each beam is scanned along a respective one of a series of tracks on the substrate. The tracks overlap so that each track comprises a first portion that is scanned by one beam and at least one second portion that overlaps an adjacent track, and is scanned by two beams. A maximum intensity of a first part of each beam directed towards a first portion of the track can be greater than a maximum intensity of a second part of that beam directed towards a second portion of the track, such that the first and second portions of the track are exposed to radiation of substantially the same maximum intensity. Such overlapping of adjacent beams and modulation of the intensity of the beams can allow the optical footprints of different optical columns to be seamed together to enable exposure of large area substrates in a single scan.
摘要:
Provided is a radiation distribution system for distributing the radiation from an illumination system to two or more patterning means, each for patterning beams of radiation, which are subsequently projected onto a substrate.
摘要:
A lithographic apparatus comprises an illumination system for supplying a beam of radiation, a patterning arrangement incorporating an array of individually controllable elements for imparting a pattern to the beam cross-section, a substrate table for supporting a substrate, and a projection system incorporating a microlens array for projecting the beam onto a target portion of the substrate. An error compensator is provided for supplying error correction values for compensating for the effect of positional errors in the microlens array, and a grey scale modulator is provided for supplying drive signals to controllable elements of the patterning arrangement in dependence on the error correction values in order to compensate for the effect of positional errors in the microlens array by varying the intensity of some parts of the pattern relative to other parts of the pattern.