Abstract:
A method and apparatus are disclosed and described for providing a synchronized workstation with two-dimensional and three-dimensional outputs. The apparatus includes a video decoder (315) for decoding picture data. The video decoder includes a data manager (320) for receiving video production commands and managing a video playback of the picture data in at least one of a two-dimensional video output mode and a three-dimensional video output mode responsive to the video production commands. The two-dimensional video output mode and the three-dimensional video output mode are capable of being used independently and simultaneously.
Abstract:
A method and apparatus are disclosed and described for providing bit rate configuration for multi-view video coding. In the video encoder, the method includes encoding image data for at least one picture for at least two joint views of multi-view video content, the at least two joint views including a base view and at least one dependent view. The bit rate configuration for encoding the image data is determined to include an average bit rate and a maximum bit rate for the base view and the average bit rate and the maximum bit rate for the at least two joint views (235, 215, 220).
Abstract:
A method and apparatus are disclosed and described for providing bit rate configuration for multi-view video coding. In the video encoder, the method includes encoding image data for at least one picture for at least two joint views of multi-view video content, the at least two joint views including a base view and at least one dependent view. The bit rate configuration for encoding the image data is determined to include an average bit rate and a maximum bit rate for the base view and the average bit rate and the maximum bit rate for the at least two joint views (235, 215, 220).
Abstract:
A method and apparatus are disclosed and described for providing hypothetical reference decoder conformance error detection. The apparatus includes a multi-pass encoder (200) for encoding pictures in a video sequence. The pictures are encoded in a first pass to determine a bit consumption of each picture, and a bit allocation is controlled during the encoding of the pictures in at least a second pass responsive to satisfying requirements for a subsequent decoding of the bitstream. The requirements relate to preventing at least one of underflow and overflow conditions in a buffer during the subsequent decoding. The bit allocation is based on the bit consumption determined in the first pass and buffer parameters. The pictures are encoded in at least the first and second passes into a plurality of bitstreams on a scene-basis such that any of the pictures belonging to a same scene are respectively encoded in a same one of the bitstreams.
Abstract:
A method and apparatus are disclosed and described for providing Offset Metadata insertion in multi-view coded video. The apparatus includes an offset metadata inserter (235) for receiving a first bitstream compressed using a single-view based two-dimensional video compression scheme, a second bitstream compressed using a multi-view based two-dimensional video compression scheme, and disparity information, and outputting a third bitstream based on the first bitstream, the second bitstream, and the disparity information. Each of the first bitstream, the second bitstream, and the disparity information correspond to a same video sequence. The third bitstream includes group of pictures information extracted from the first bitstream and underlying content of the video sequence at least some of which is extracted from the second bitstream. The third bitstream has embedded therein one or more messages that specify the disparity information for use in overlaying information on the underlying content of the video sequence during a subsequent displaying of the overlaying information on the underlying content.
Abstract:
A method for inserting a logo into a stereo video image to generate an overlaid stereo image, the method comprising: detecting presence of stereo pictures in the video image and, when stereo pictures are detected, determining the 3D format of said stereo pictures, said 3D format being a stereo spatially multiplexed format; generating a stereo logo comprising stereo spatially multiplexed logo pictures including a representation of the logo, said stereo spatially multiplexed logo pictures being arranged in said 3D format; and combining the stereo logo and the video image to generate the overlaid stereo image in said 3D format.
Abstract:
Methods and apparatus are provided for sampling-based super resolution video encoding and decoding. The encoding method receives high resolution pictures and generates low resolution pictures and metadata there from, the metadata for guiding post-decoding post-processing of the low resolution pictures and the metadata; and then encodes the low resolution pictures and the metadata using at least one encoder. The corresponding decoding method receives a bitstream and decodes low resolution pictures and metadata there from using a decoder; and then reconstructs high resolution pictures respectively corresponding to the low resolution pictures using the low resolution pictures and the metadata.
Abstract:
Methods and apparatus are provided for reducing vector quantization error through patch shifting. A method generates, from an input video sequence, one of more high resolution replacement patches, the one or more high resolution replacement patches for replacing one or more low resolution patches during a reconstruction of the input video sequence. This generating step generates the one or more high resolution replacement patches using data corresponding to a patch spatial shifting process, the patch spatial shifting process for reducing jittery artifacts caused by a motion-induced vector quantization error in the one or more high resolution replacement patches, the data for at least deriving a patch size of the one or more high resolution replacement patches such that the one or more high resolution replacement patches are generated to have the patch size greater than a patch size of the one or more low resolution patches in order to be suitable for use in the patch spatial shifting process.
Abstract:
Substantial elimination of errors in the detection and location of overlapping human objects in an image of a playfield is achieved, in accordance with at least one aspect of the invention, by performing a predominately shape-based analysis of one or more characteristics obtained from a specified portion of the candidate non-playfield object, by positioning a human object model substantially over the specified portion of the candidate non-playfield object in accordance with information based at least in part on information from the shape-based analysis, and removing an overlapping human object from the portion of the candidate non-playfield object identified by the human object model. In one exemplary embodiment, the human object model is an ellipse whose major and minor axes are variable in relation to one or more characteristics identified from the specified portion of the candidate non-playfield object.
Abstract:
One or more implementations access a digital image and determine whether at least one portion of the digital image includes one or more bands having a difference in color. The determination is based on at least two candidate scales. One or more implementations access a digital image and assess at least a portion of the digital image for the existence of one or more bands having a difference in color. The assessing includes determining a fraction of pixels in the portion having a color value offset by an offset value from a color value of a particular pixel in the portion.