摘要:
A first conversion unit (201) converts a signal from a time domain to a frequency domain. A signal extraction unit (202) extracts common channel information included in the signal which has been converted by the first conversion unit (201). A signal substitution unit (207) restores the common channel information which has been extracted by the signal extraction unit (202). An addition unit (208) substitutes the common channel information which has been restored by the signal substitution unit (207) for the common channel information included in the signal which has been converted by the first conversion unit (201). A second conversion unit (209) converts the signal including the common channel information substituted, which has been converted by the first conversion unit (201), from the frequency domain to the time domain.
摘要:
It is possible to provide an SC-FDMA transmission device and an SC-FDMA transmission signal formation method which improve the transmission efficiency of the SC-FDMA transmission signal. The SC-FDMA transmission device (100) performs the discrete Fourier transform process on a primary modulation signal sequence formed by N primary modulation symbols to obtain a plurality of frequency components, which are respectively mapped onto different subcarriers. The obtained SC-FDMA symbol is subjected to the inverse Fourier transform process before being transmitted. A propagation path information decoding unit (155) acquires frequency selection characteristic in a propagation path to/from a reception side. A cyclic shift unit (110) and a correlation characteristic judgment unit (115) adjust the frequency response of the SC-FDMA symbol according to the frequency selection characteristic. The adjustment is performed by a result of correlation obtained by performing a correlation calculation between the propagation path frequency selection characteristic and the SC-FDMA symbol.
摘要:
It is possible to provide an SC-FDMA transmission device and an SC-FDMA transmission signal formation method which improve the transmission efficiency of the SC-FDMA transmission signal. The SC-FDMA transmission device (100) performs the discrete Fourier transform process on a primary modulation signal sequence formed by N primary modulation symbols to obtain a plurality of frequency components, which are respectively mapped onto different subcarriers. The obtained SC-FDMA symbol is subjected to the inverse Fourier transform process before being transmitted. A propagation path information decoding unit (155) acquires frequency selection characteristic in a propagation path to/from a reception side. A cyclic shift unit (110) and a correlation characteristic judgment unit (115) adjust the frequency response of the SC-FDMA symbol according to the frequency selection characteristic. The adjustment is performed by a result of correlation obtained by performing a correlation calculation between the propagation path frequency selection characteristic and the SC-FDMA symbol.
摘要:
To narrow the dynamic range of multicarrier signals and prevent both the increment of cost and the degradation of power efficiency. A modulating part (101) modulates transport data. An S/P converting part (102) performs an S/P conversion of a modulated symbol and outputs the modulated symbols, the number of which is the same as the number of all subcarriers, to an IFFT part (103) in parallel. The IFFT part (103) assigns the modulated symbols to the subcarriers, the frequencies of which are orthogonal to each other, to perform an inverse fast Fourier transform. A P/S converting part (104) performs a P/S conversion of the signals of time domain. When the instantaneous amplitude level of an OFDM signal is lower than a predetermined threshold value, a pit clip part (105) replaces this amplitude level by the predetermined threshold value. In other words, when the instantaneous power of the OFDM signal is close to zero, the pit clip part (105) converts a power value to a value that is greater than the actual power value.
摘要翻译:缩小多载波信号的动态范围,防止成本增加和功率效率的退化。 调制部(101)调制传输数据。 S / P转换部分(102)执行调制符号的S / P转换,并且将其数量与所有子载波数相同的调制符号并行地输出到IFFT部分(103)。 IFFT部分(103)将调制符号分配给彼此正交的频率的子载波,以执行快速傅立叶逆变换。 P / S转换部(104)进行时域信号的P / S转换。 当OFDM信号的瞬时幅度电平低于预定阈值时,凹坑夹部分(105)将该幅度电平取代预定阈值。 换句话说,当OFDM信号的瞬时功率接近零时,凹坑夹部分(105)将功率值转换成大于实际功率值的值。
摘要:
A radio transmitter and a radio receiver which reduce the number of blind determinations of control signals while maintaining resource utilization efficiency. A radio transmitter (100) includes a hash value calculating section (131) for calculating a hash value from a bit sequence indicating the device ID of each device or a transmission destination, and arranges a plurality of control channel signals in the order in which the calculated hash value of the each device increases or decreases monotonously in a frequency region which is the mapping resource range of the control channel signals. A radio receiver (200) acquires the order in which the control channel signals arranged according to the hash value are arranged. Even when the terminal ID included in the control channel signal decoded first is not the terminal ID of the radio receiver (200), the radio receiver (200) predicts the range in which the control channel signal including the terminal ID of the radio receiver (200) exists in the order by comparing the hash values obtained from both the terminal IDs with each other.
摘要:
Reduction in the detection accuracy of synchronization timing at the receiving end is prevented even if a GCL system changes in response to a GCL ID. A transmitter (100) has a GCL system generating section (101) for generating a GCL system signal, a scramble processing section (102) for scrambling the GCL system signal, and a sub-carrier mapping section (103) for arranging the scrambled GCL system signal in a sub-carrier in the direction of a frequency. With this, the peak width of the differential correlation value of the GCL system at the receiving end is narrowed, so that accurate synchronization timing can be detected at the receiving end.
摘要:
A radio base station apparatus wherein even when a single-base-station transmission and a plural-base-station cooperative transmission are implemented at the same time, the terminal-to-base-station feedback information amount and the inter-cell interference (ICI) can be reduced. A base station uses a first transmission mode, in which only the base station implements a signal transmission, and a second transmission mode, in which the base station implements a cooperative signal transmission together with another radio base station apparatus, to communicate with one or more radio terminal apparatuses. A setting unit sets, as a particular frequency band whose reception quality is to be measured, one of first and second frequency bands that are parts of a band used for communication with the terminals. A deciding unit decides, as the transmission mode for the terminals, one of the first and second transmissions based on the reception quality of the particular frequency band.
摘要:
An OFDM transmitter and receiver realizing high-speed cell search and having a reducible circuit scale. An OFDM transmitter includes an SCH inserting section for constructing a frame where a synchronization sequence in a predetermined position from the head of a first sub-frame is arranged and a synchronization sequence composed of the symbols of the former synchronization sequence and the symbols whose I, Q components are interchanged is arranged in a predetermined position from the head of a second sub-frame adjacent in the time-axis direction to the former sub-frame, an IFFT section, a P-SCH conversion section, and an RF transmitting section for transmitting this frame. Thus, the receiving end of the frame can locate the position of either synchronization sequence and determine the frame timing from that position, thereby increasing the speed of the cell search.
摘要:
A transmitter which is capable of producing an SSB signal having a sharp spectrum cut. The transmitter generates the SSB signal using an FFT circuit (103) which Fourier-transforms a transmission symbol, a zero insertion circuit (104) which zeros the component of either the USB component signal or the LSB component signal outputted from the FFT circuit (103), an IFFT circuit (105) which inverse-Fourier-transforms the output from the zero insertion circuit (104), and a parallel-serial conversion circuit (106) which parallel-serial-converts the output from the IFFT circuit (105).
摘要:
A multi-carrier transmission device improves peak suppression efficiency in a multi-carrier signal. The multi-carrier transmission device (100) has a peak suppression unit (140) for dividing a multi-carrier signal into two parts: a first multi-carrier signal and a second multi-carrier signal. A peak signal detection unit (142) detects a power value at a predetermined interval concerning the first multi-carrier signal. When the detected power value is equal to or above a predetermined level, a peak extraction unit (144) extracts a signal component equal to or above the predetermined level from the first multi-carrier signal. A band limit filter unit (146) passes only a predetermined band from the extracted signal component. An adder (154) subtracts the signal component after the band limit from the second multi-carrier signal. A multiplier (150) is arranged at a latter stage of the band limit filter unit (146) and multiplies a weight for compensating the power loss in the band limit filter unit (146) and the first multi-carrier signal.