摘要:
A method for optimally issuing instructions that are related to a first instruction in a data processing system is disclosed. The processing system includes a primary and secondary cache. The method and system comprises speculatively indicating a hit of the first instruction in a secondary cache and releasing the dependent instructions. The method and system includes determining if the first instruction is within the secondary cache. The method and system further includes providing data related to the first instruction from the secondary cache to the primary cache when the instruction is within the secondary cache. A method and system in accordance with the present invention causes instructions that create dependencies (such as a load instruction) to signal an issue queue (which is responsible for issuing instructions with resolved conflicts) in advance, that the instruction will complete in a predetermined number of cycles. In an embodiment, a core interface unit (CIU) will signal an execution unit such as the Load Store Unit (LSU) that it is assumed that the instruction will hit in the L2 cache. An issue queue uses the signal to issue dependent instructions at an optimal time. If the instruction misses in the L2 cache, the cache hierarchy causes the instructions to be abandoned and re-executed when the data is available.
摘要:
Pipelining and parallel execution of multiple load instructions is performed within a load store unit. When a first load instruction incurs a cache miss and proceeds to retrieve the load data from the system memory hierarchy, a second load instruction addressing the same load data will be merged into the first load instruction so that the data returned from the system memory hierarchy is sent to register files associated with both the first and second load instructions. As a result, the second load instruction does not have to wait until the load data has been written and validated in the data cache.
摘要:
A processor (100) includes an issue unit (125) having an issue queue (144) for issuing instructions to an execution unit (140). The execution unit (140) may accept and execute the instruction or produce a reject signal. After each instruction is issued, the issue queue (144) retains the issued instruction for a critical period. After the critical period, the issue queue (144) may drop the issued instruction unless the execution unit (140) has generated a reject signal. If the execution unit (140) has generated a reject signal, the instruction is eventually marked in the issue queue (144) as being available to be reissued. The length of time that the rejected instruction is held from reissue may be modified depending upon the nature of the rejection by the execution unit (140). Also, the execution unit (140) may conduct corrective actions in response to certain reject conditions so that the instruction may be fully executed upon reissue.
摘要:
In a load/store unit within a microprocessor, load instructions are executed out of order. The load instructions are assigned tags in a predetermined manner, and then assigned to a load reorder queue for keeping track of the program order of the load instructions. Then when new load instructions are issued, the new load instructions are compared to entries within the load reorder queues to detect out of order problems.
摘要:
In a load/store unit within a microprocessor, load and store instructions are executed out of order. The load and store instructions are assigned tags in a predetermined manner, and then assigned to load and store reorder queues for keeping track of the program order of the load and store instructions. Then when new load or store instructions are issued, the new load or store instructions are compared to entries within the load and store reorder queues to detect out of order problems.
摘要:
In a load/store unit within a microprocessor, load and store instructions are executed out of order. The load and store instructions are assigned tags in a predetermined manner, and then assigned to load and store reorder queues for keeping track of the program order of the load and store instructions. When a load instruction is issued for execution, a determination is made whether the load instruction is attempting to load data to a memory location that is the same as a previously executed store instruction is waiting to complete. If so, then the data waiting to be stored within the cache by the store instruction is directly forwarded to the load instruction.
摘要:
The illustrative embodiments described herein provide a computer-implemented method, apparatus, and a system for managing instructions. A load/store unit receives a first instruction at a port. The load/store unit rejects the first instruction in response to determining that the first instruction has a first reject condition. Then, the instruction sequencing unit activates a first bit in response to the load/store unit rejection the first instruction. The instruction sequencing unit blocks the first instruction from reissue while the first bit is activated. The processor unit determines a class of rejection of the first instruction. The instruction sequencing unit starts a timer. The length of the timer is based on the class of rejection of the first instruction. The instruction sequencing unit resets the first bit in response to the timer expiring. The instruction sequencing unit allows the first instruction to become eligible for reissue in response to resetting the first bit.
摘要:
A data processing system including a processor having a load/store unit and method for utilizing alias hit signals to detect errors within the read address tag arrays. Within a load store unit, implemented within a processor, a real address tag array is utilized to indicate when effective address aliasing occurs in a primary cache array. If aliasing occurs, Alias Hit signals are then used to clear any aliased entries. These Alias Hit signals can also be utilized to determine if there has been some type of failure within the real address tag array.
摘要:
A system and method for determining an age function by performing a logical function on each entry residing within a queue, determining when a particular one of the entries residing in the queue was stored in the queue relative to the other entries, and determining an oldest or youngest entry residing in the queue relative to the logical functions performed on each of the instructions. In one embodiment of the present invention, the entries are instructions temporarily stored within a queue in the processor. The logical function performed may determine which of the instructions is valid. The queue may be cyclical.
摘要:
A data processing system includes a processor, a unit that includes a multi-level cache, a prefetch system and a memory. The data processing system can operate in a first mode and a second mode. The prefetch system can change behavior in response to a desired power consumption policy set by an external agent or automatically via hardware based on on-chip power/performance thresholds.