摘要:
A touch sensitive liquid crystal display device (70) having first, second, and third substrates, (40), (76) and (90) and a plurality of raised ribs members (46), (48), (50), (42) and (44) to maintain appropriate spacing between said substrates. Electrically conductive material is disposed on one or more surfaces of the substrates in order to effect a change in the optical characteristics of a liquid crystal material (100) disposed between said second and third substrates.
摘要:
A method of and fuel cell system for limiting an amount of a fuel crossing over a membrane in a fuel cell, the method including determining an appropriate molecular ratio of the fuel and water for a fuel-water mixture 503; and controlling an amount of the fuel-water mixture that is available to an anode side of the membrane 507 in the fuel cell according to an amount of the fuel that will be electro-oxidized by the fuel cell. The fuel cell system includes a fuel cell membrane 103 having an anode layer 107, a cathode layer 109, and an electrolyte layer 111 where the cathode layer is exposed to an oxygen source, and a fuel delivery system 105 including a fuel chamber 119 disposed around and proximate to the anode layer at a side opposite to the electrolyte layer, the fuel delivery system implementing the method above.
摘要:
An improved hydrogen storage medium in the form of a fabric (124, 504, 704) comprises a yarn (300, 400) that includes carbon nanofibers or carbon nanotubes (302, 404) and elastomeric fibers (304, 402). The fabric (124, 504, 704) is a volume efficient arrangement of the carbon nanofibers or carbon nanotubes (302, 404) and is consequently characterized as a high density energy storage medium. According to a preferred embodiment a hydrogen storage device (100) comprises a flexible container (104) that includes the fabric (124). The flexibility of the container (104) in combination with the flexibility of the fabric (124) allows the hydrogen storage device 100 to be accommodated in irregularly shaped spaces. According to an embodiment of the invention a battery (700) uses the fabric (704) as a hydrogen storing anode.
摘要:
A gas pressure regulator (100) includes a mechanical primary stage (102), preferably including a spring valve, and an electronic secondary stage (104), preferably including a micromachined pressure regulator, the combination of the mechanical primary stage and the electronic secondary stage suitable for relatively precise low pressure near zero flow rates with reasonable energy consumption rates, such as encountered when supplying fuel to a low power fuel cell system.
摘要:
An appliqué (502) for use in in-mold decoration comprise energetic beam responsive layers (108, 208, 308, 402) sandwiched between two substrates (102, 104) that have areas of thermally coalescable material of differing dispersed body size. In use, the energetic beam responsive layers (108, 208, 308, 402) are patternwise irradiated in order form graphics (504) and/or text (506). The appliqué (502) is incorporated into an injection molded part (500) using in-mold decoration injection molding.
摘要:
A method (50) of altering content provided to a user includes the steps of creating (60) a user profile based on past physiological measurements of the user, monitoring (74) at least one current physiological measurement of the user, and altering (82) the content provided to the user based on the user profile and the at least one current physiological measurement. The user profile can be created by recording a plurality of inferred or estimated emotional states (64) of the user which can include a time sequence of emotional states, stimulus contexts for such states, and a temporal relationship between the emotional state and the stimulus context. The content can be altered in response to the user profile and measured physiological state by altering at least one among an audio volume, a video sequence, a sound effect, a video effect, a difficulty level, a sequence of media presentation.
摘要:
A method of making an energetic beam markable appliqués (502) includes dispersing a plurality of bodies (110) of a first heat coalescable material within a second material (114) to form a plural phase material (108), coating a substrate (104) with the plural phase material (108) to form a coating of the plural phase material, and patternwise irradiating the coating of the plural phase material.
摘要:
A method for humidifying a fuel stream for a direct methanol fuel cell. An ultrasonic transducer (122) is used to create a vapor of methanol without heating. Water is also vaporized with an ultrasonic transducer (132) to create a vapor of water without heating. The water vapor and the methanol vapor are combined (240) in a certain ratio to form a humidified fuel vapor which is presented to an anode (112) of the direct methanol fuel cell (110). The ratio of water to methanol can be adjusted automatically by a sensor (180) that monitors the current drawn by the load (170) on the fuel cell.
摘要:
An improved hydrogen storage medium in the form of a fabric (124, 504, 704) comprises a yarn (300, 400) that includes carbon nanofibers or carbon nanotubes (302, 404) and elastomeric fibers (304, 402). The fabric (124, 504, 704) is a volume efficient arrangement of the carbon nanofibers or carbon nanotubes (302, 404) and is consequently characterized as a high density energy storage medium. According to a preferred embodiment a hydrogen storage device (100) comprises a flexible container (104) that includes the fabric (124). The flexibility of the container (104) in combination with the flexibility of the fabric (124) allows the hydrogen storage device 100 to be accommodated in irregularly shaped spaces. According to an embodiment of the invention a battery (700) uses the fabric (704) as a hydrogen storing anode.
摘要:
A method of and fuel cell system for limiting an amount of a fuel crossing over a membrane in a fuel cell, the method including determining an appropriate molecular ratio of the fuel and water for a fuel-water mixture 503; and controlling an amount of the fuel-water mixture that is available to an anode side of the membrane 507 in the fuel cell according to an amount of the fuel that will be electro-oxidized by the fuel cell. The fuel cell system includes a fuel cell membrane 103 having an anode layer 107, a cathode layer 109, and an electrolyte layer 111 where the cathode layer is exposed to an oxygen source, and a fuel delivery system 105 including a fuel chamber 119 disposed around and proximate to the anode layer at a side opposite to the electrolyte layer, the fuel delivery system implementing the method above.