Abstract:
A method for ascertaining an inner resistance of a supply network for supplying energy to an occupant protection system of a vehicle. The occupant protection system includes a charging unit connected to the supply network using a primary interface and to an energy buffer store using a secondary interface for the temporary storage of energy for activating occupant protection devices system and for supplying the system after being separated from the supply network. The method includes impressing a first charge current value at the secondary interface, and a first current/voltage at the primary interface during the impression. Further, a second, different, charge current value is impressed at the secondary interface. The method also includes determining a second current/voltage at the primary interface during the impression, and ascertaining the inner resistance of the supply network, using the detected first current and second current and/or the first voltage and the second voltage.
Abstract:
In a method for testing a supply circuit for an ignition circuit having at least one energy accumulator, a first conversion circuit that raises a supply voltage to a specified voltage level and charges the at least one energy accumulator, a controllable discharging circuit that discharges the at least one energy accumulator as needed, the energy accumulator is connected via a first coupling diode to the ignition circuit, and the supply voltage is applied via a second coupling diode to the at least one ignition circuit. Following the system start-up, a state of charge of the at least one energy accumulator is ascertained and compared to the at least one specified threshold value, and as a function of the comparison, a faultless supply circuit or at least one fault is recognized.
Abstract:
A method for the self-diagnosis of a vehicle system that is supplied with energy by an on-board vehicle electrical system and includes a control unit with at least one integrated system circuit, which includes at least one internal energy supply, a sequence and logic controller and a safety controller, and with at least one microcontroller, and a vehicle system for carrying out the method.
Abstract:
A control unit for activating a personal protection device of a vehicle. The control unit includes a one-piece compute module, which includes a first area including a permanently wired processing structure and a second area including a programmable processing structure, the compute module being designed to carry out a processing instruction for activating the personal protection device in at least the second area.
Abstract:
An energy supply unit for supplying a consumer, includes an energy store to supply electric when the consumer is decoupled from an energy supply network. The energy supply unit includes an energy supply controller having an input coupled to the energy store, via a diode, for receiving electric energy and an output for delivering electric energy, and a monitoring unit for outputting a monitoring signal, configured to set the monitoring signal to an active state when an output voltage between the output and a reference potential is lower/greater than a predefined activation threshold value, the monitoring unit configured, when an excessively low input voltage is identified between the input and reference potential of the controller, especially paired with an excessively low output voltage, the monitoring signal is switched to the inactive state when the input voltage is above a reset threshold and the output voltage is within the monitoring band.
Abstract:
An integrated regulator is described, in particular a voltage regulator for occupant protection means in a vehicle, including a regulating element, which converts an input signal into an output signal having a predefined value, and a trigger circuit, which activates the regulating element to generate the output signal having the predefined value. A configuration circuit is provided, which receives and evaluates at least one configuration signal and deactivates the regulating element as a function of the evaluation.
Abstract:
A step-down voltage regulator. The step-down voltage regulator includes a configurable integrated switch circuit, which includes a configurable analysis and control unit, a configurable actuation circuit, compensation circuit, and controllable semiconductor switch, and includes an external wiring with different components. The wiring is electrically connected to connections of the integrated switch circuit. A feedback signal representing an output voltage that can be tapped at an output of the integrated switch circuit is fed back to the analysis and control unit, which generates a switch signal in combination with the actuation circuit based on the feedback signal and outputs it to the controllable semiconductor switch such that a closed control loop for regulating the output voltage is produced from an input voltage applied to an input of the integrated switch circuit. The output voltage maximally has the voltage level of the input voltage.
Abstract:
A method for ascertaining an inner resistance of a supply network for supplying energy to an occupant protection system of a vehicle. The occupant protection system includes a charging unit connected to the supply network using a primary interface and to an energy buffer store using a secondary interface for the temporary storage of energy for activating occupant protection devices system and for supplying the system after being separated from the supply network. The method includes impressing a first charge current value at the secondary interface, and a first current/voltage at the primary interface during the impression. Further, a second, different, charge current value is impressed at the secondary interface. The method also includes determining a second current/voltage at the primary interface during the impression, and ascertaining the inner resistance of the supply network, using the detected first current and second current and/or the first voltage and the second voltage.
Abstract:
A method for recognizing the breakdown of an energy reserve device of at least two energy reserve devices of a device for protecting the occupants of a vehicle. The method includes: charging the at least two energy reserve devices to a test voltage level; ascertaining an ambient temperature of the at least two energy reserve devices; acquiring the (overall) capacitance of the at least two energy reserve devices; recognizing the breakdown of an energy reserve device as a function of a floating mean value, which is a function of the ascertained ambient temperature, for the (overall) capacitance and of the acquired (overall) capacitance; updating a floating mean value as a function of the ascertained ambient temperature and the acquired overall capacitance.
Abstract:
An integrated regulator, in particular a voltage regulator, for a personal protection arrangement in a vehicle, includes a regulating element that converts an input signal into an output signal having a defined value, and a control application circuit that applies control to the regulating element to generate the output signal having the defined value. The control application circuit outputs the output signal via the regulating element with at least two different selectable values as a function of a specifying signal, such that for selection of the value of the output signal, a configuration circuit receives at least one configuration signal and, as a function of a configuration ascertained in the context of evaluation, selects one of at least two different specifying signals and applies it to the control application circuit to output the output signal having the selected value.