Abstract:
A braking method is used for a vehicle that has at least one front wheel and at least one rear wheel. A hydraulically actuatable brake is provided at the front wheel and the rear wheel, and an automatic parking brake is provided at the rear wheel. The braking method enables an optimal brake pressure to be built up as rapidly as possible. In a first step of an initiation phase of the braking method, the front wheel is braked by the hydraulically actuatable brakes and the rear wheel is braked exclusively by the automatic parking brake.
Abstract:
A method for operating a regenerative braking system of a vehicle includes: applying control to at least one valve of a brake circuit, before and/or during operation of a generator of the braking system, so that brake fluid is displaced out of a brake master cylinder and/or out of the at least one brake circuit into at least one reservoir volume; defining a target force difference variable regarding a booster force exerted by a brake booster in consideration of at least one of a generator braking torque information item, a brake master cylinder pressure variable, and an evaluation variable derived from at least the generator braking torque information item or the brake master cylinder pressure variable; and controlling the brake booster in consideration of the defined target force difference variable.
Abstract:
A control device is provided for a hydraulic braking system of a vehicle, including an actuating device which is designed for outputting, at least temporarily, at least one first control signal and at least one second control signal in at least a first operating mode, taking into account at least one sensor signal. A known hydraulic braking system may be controlled with the aid of the control signals, output by the actuating device, in such a way that during an activation of a brake actuating element, at least one blending valve of a first brake circuit which is connected to the master brake cylinder via a first changeover valve is controlled into an at least partially open state in such a way that brake fluid is displaceable into at least one storage chamber.
Abstract:
A control device for a vehicle deceleration device of a vehicle including an electronics unit, with the aid of which a time curve of an input variable predefined by a driver of the vehicle with the aid of an actuation of the brake actuating element is evaluatable and the vehicle deceleration device is activatable taking into account the updated input variable and a characteristic curve, which specifies a relationship between the input variable and a setpoint variable with respect to a setpoint vehicle deceleration to be exerted on the vehicle with the aid of the vehicle deceleration device. The electronics unit detects at least one modulation and/or variation of the input variable triggered by the driver and reestablishes at least one subsection of the characteristic curve taking into account the at least one modulation and/or variation of the input variable (xinput) triggered by the driver.
Abstract:
A unit for detecting a filling level of a liquid in a container. The unit includes at least one float gauge, which carries at least one permanent magnet, and including at least one switching unit, which is actuatable by the permanent magnet and is fastened in or at the container. It is provided that at least one energizable magnetic device for generating a magnetic field is assigned to the switching unit, which, when sufficiently energized, generates a magnetic field, which actuates the switching unit when the switching unit is functional.
Abstract:
A control device for a brake system of a vehicle includes an electronic device configured to perform a method including determining, taking into account a specified braking of a driver of the vehicle or of an automatic control system of the vehicle, a first item of information regarding a current usability of a hydraulic device of the brake system and a second item of information regarding a current usability of a brake booster of the brake system, which first target portion of a brake pressure increase is to be provided by the hydraulic device, and which second target portion of the brake pressure increase is to be provided by the brake booster, and controlling the hydraulic device and/or the brake booster so that the first target portion of the brake pressure increase is provided by the hydraulic device and the second target portion is provided by the brake booster.
Abstract:
A control device for a recuperative braking system of a vehicle includes: an actuating device configured to (i) select the maximum value of a front axle generator braking torque and of a rear axle generator braking torque, taking into account at least one provided default variable concerning a setpoint total braking torque which is predefined by a driver, (ii) control an electric motor, and (iii) control a hydraulic front axle brake circuit component and a hydraulic rear axle brake circuit component in such a way that a front axle brake pressure and a rear axle brake pressure are settable in such a way that a difference between a predefined setpoint braking torque distribution and an actual braking torque distribution present between the front axle and the rear axle is minimized.
Abstract:
A method for operating a regenerative braking system of a vehicle includes: applying control to at least one valve of a brake circuit, before and/or during operation of a generator of the braking system, so that brake fluid is displaced out of a brake master cylinder and/or out of the at least one brake circuit into at least one reservoir volume; defining a target force difference variable regarding a booster force exerted by a brake booster in consideration of at least one of a generator braking torque information item, a brake master cylinder pressure variable, and an evaluation variable derived from at least the generator braking torque information item or the brake master cylinder pressure variable; and controlling the brake booster in consideration of the defined target force difference variable.
Abstract:
A brake assembly includes a hydraulic auxiliary-power-operated first brake system including a master brake cylinder operably connected to an electromechanical brake booster and a hydraulic wheel brake for at least one wheel, the master brake cylinder configured to be activated by muscle force, and an externally powered second brake system including a hydraulic pressure source operated by external power and operably connected to a hydraulic wheel brake for at least one other wheel. The brake assembly further includes an electric drive motor configured for operation as a generator to brake the motor vehicle by acting on the at least one other wheel and a control unit configured to reduce a braking effect of the first brake system by reducing boosting of the electromechanical brake booster, if a braking effect of the electric drive motor in a generator mode is greater than the determined braking effect of the second brake system.
Abstract:
A control device for a vehicle deceleration device of a vehicle including an electronics unit, with the aid of which a time curve of an input variable predefined by a driver of the vehicle with the aid of an actuation of the brake actuating element is evaluatable and the vehicle deceleration device is activatable taking into account the updated input variable and a characteristic curve, which specifies a relationship between the input variable and a setpoint variable with respect to a setpoint vehicle deceleration to be exerted on the vehicle with the aid of the vehicle deceleration device. The electronics unit detects at least one modulation and/or variation of the input variable triggered by the driver and reestablishes at least one subsection of the characteristic curve taking into account the at least one modulation and/or variation of the input variable (xinput) triggered by the driver.