Abstract:
Apparatuses and methods are provided for converting solar energy. The apparatus can include an emitter electrode, a collector electrode, a vacuum gap, and an electronic circuit. The emitter electrode can include a first light absorbing layer in direct contact with a first low work function layer. The vacuum gap can be disposed between the emitter and the collector. The vacuum gap can be in direct contact with the first low function layer. The electronic circuit can be coupled to the emitter electrode and the collector electrode. The first low work function layer can be disposed at least partially between the first light absorbing layer and the vacuum gap.
Abstract:
A rectifying contact for use at high temperatures including a monocrystalline semiconducting diamond layer on a substrate and a heteroepitaxial metal layer thereon. The metal layer has a lattice match with the diamond and is deposited on the diamond substantially in atomic registry therewith. The metal and diamond form a rectifying contact which has good mechanical adhesion and provides stable rectifying operation at elevated temperatures. The metal layer may be formed by deposition in an ultra-high vacuum. In alternate embodiments, the metal layer may be formed on a monocrystalline semiconducting diamond substrate or on at least one monocrystalline diamond area of a textured polycrystalline layer.
Abstract:
A thermionic electron emitter/collector includes a substrate and a doped diamond electron emitter/collector layer on the substrate. The doped diamond electron emitter/collector layer has at least a first and a second doping concentration as a function of depth such that the first doping concentration is different from the second doping concentration.
Abstract:
A thermionic electron emitter/collector includes a substrate and a doped diamond electron emitter/collector layer on the substrate. The doped diamond electron emitter/collector layer has at least a first and a second doping concentration as a function of depth such that the first doping concentration is different from the second doping concentration.
Abstract:
A semiconductor device comprising a semiconducting diamond layer, (e.g. single crystal or polycrystalline), a refractory metal silicide layer adjacent the diamond layer for forming a rectifying contact therewith, and an annealed interface region between the diamond layer and the refractory metal silicide layer. The annealed interface region is preferably a non-abrupt interface comprising material selected from the group consisting of silicon carbide, the carbide of the refractory metal and mixtures thereof. The present invention also provides a method for making a rectifying contact on a semiconducting diamond layer comprising the steps of forming a refractory metal silicide on the diamond layer, and annealing the refractory metal silicide and diamond layer. Preferably, the step of annealing comprises the step of heating the diamond layer and refractory metal silicide at temperature of at least about 450.degree. C.
Abstract:
A method of forming an ohmic contact between an amorphous silicon hydride semiconductor and a substrate which includes coating a film of palladium on the substrate and overcoating the palladium with a thin film of amorphous silicon hydride forming a thin palladium silicide layer. The amorphous silicon hydride is dehydrogenated by annealing forming a highly defective amorphous silicon layer and a thicker palladium silicide layer through which carriers can readily tunnel. The amorphous silicon hydride semiconductor is then coated over the amorphous silicon layer to the desired thickness.