摘要:
The image processor (101) for motion compensated image processing comprises a motion compensation unit (106) for calculating an output image based on a particular motion vector field and based on a first input image and a second input image. The particular motion vector field can be calculated by a motion estimator (104) which is part of the image processor (101) or by an external unit (108). The image processor (101) is designed to select from which source, i.e. the motion estimator (104) or the external unit (108), the particular motion vector field is taken to calculate the output image. The external source is designed to calculate the particular motion vector field based on a motion vector field which was provided by the motion estimator (104) of the image processor (101).
摘要:
Signal processing device for providing multiple output images by processing input images of an interlaced video signal, comprising a temporal interpolater circuit (18) and a memory buffer (26, 27) connected to the temporal interpolater circuit. The memory buffer (26, 27)is arranged for storing at least part of a previous input image (11, 13) and a current input image (12). The temporal interpolater circuit (18) is arranged for receiving at least the previous and current input image from the memory buffer (26, 27) and for providing multiple interlaced or de-interlaced frame data (15) at temporal positions between the previous input image temporal position and the current input image temporal position.
摘要:
An apparatus and method for facilitating a subsequent choice of a motion vector from a plurality of candidate motion vectors in a motion estimation method, include receiving video image data from first, second and third consecutive groups (10, 20, 30) of image data. A first image part (12) of the first group of image data (10), a second image part (22) of the second group of image data (20), and a third image part (32) of the third group of image data (30) are identified, wherein the positions of the three image parts (12, 22, 32) correspond to a motion trajectory that is indicated by a candidate motion vector. A first error measure is then calculated by testing for differences between the first image part (12) and the third image part (32) and quantified as a first error measure. A second error measure is calculated by testing for differences between either the first image part (12) and the second image part (22) or the second image part and the third image part and quantified as a second error measure. An output error measure is then quantified, wherein the output error measure is derived from either the first or the second or a combination of both error measures.
摘要:
Estimating and/or compensating motion in a video image is provided wherein an image segment of the video image is selected, a search area is defined around the image segment, the defining being based on a range of possible motion vectors for the image segment, and image data related to said search area is retrieved. The search area is defined to have its center offset from a center of the image segment. The offset may be determined by a global motion parameter.
摘要:
A control signal (k_lum) derived from the luminance component (Y) of a video signal is used to adaptively control a temporal noise reduction filter (10) according to the level of motion in a video image. To compress the control signal for storage in a memory (30), the control signal is averaged over each 2×2 pixel area, and then a non-linear compression function is applied. The non-linear compression function preferably selects quantization values of the control signal which correspond to a perceptually substantially linear response in the noise reduction factor (NRF) of the noise filter (10).
摘要:
A video apparatus includes a circuit for reducing noise in applied input video signals. The noise reducing circuit is provided with a temporal noise filter (S1, LUT, M), a down-sample unit (D) for obtaining a spatial down-sampling of video signals (Vi) of subsequent pixels, these down-sampled video signals being supplied to the temporal noise filter (S1, LUT, M), and an up-sample unit (U) for generating, in response to noise output signals obtained in the temporal noise filter (S1, LUT, M), noise signals of the pixels, and a subtractor (S2) for subtracting the noise signals from the respective input video signals (Vi).
摘要:
One embodiment of the present invention discloses a method for processing video data within a video data processing path of a processing unit. The video data processing path includes three stages. In the first stage, source operands are extracted from a local register file and are ordered to map efficiently onto the downstream data path. In the second stage, arithmetic operations are performed on the source operands based on video processing instructions to generate intermediate results. In the third stage, additional operations are performed on the intermediate results based on the video processing instructions. In some embodiment, the intermediate results are combined with additional operands retrieved from the local register file.
摘要:
A method includes projecting motion vectors describing a transformation from a previous video frame to a future video frame onto a plane between the previous video frame and the future video frame, detecting potential artifacts at the plane based on an intersection of a cover region and an uncover region on the plane, and analyzing a dissimilarity between a trial video frame and both the previous video frame and the future video frame. The trial video frame is generated between the previous video frame and the future video frame based on a frame rate conversion ratio derived from a source frame rate and a desired frame rate. The method also includes estimating reliability of the projected motion vectors based on the potential artifact detection and the dissimilarity analysis.
摘要:
The invention relates to a motion-compensated interpolation of a data-signal, which data-signal comprises successive images wherein each image comprises groups of pixels, in which motion vectors are generated (18), each motion vector corresponding to a group of pixels of one image, between a group of pixels of said one image and a second group of pixels of another image in the data-signal, and interpolated results are obtained (16) as a function of these motion vectors. In accordance with the present invention, the reliability of each motion vector corresponding to a particular group of pixels is estimated (20), weights are calculated as a function of the reliability of the motion vectors, and interpolated luminous intensities of groups of pixels are generated for an interpolated image by calculating, on the basis of these weights, weighted averages of the interpolated results.
摘要:
Sub-pixel accurate motion estimation from digital video requires interpolation of data. In a symmetrical motion estimator that shifts the neighboring images over complementary fractions (−D/2, D/2) of the vector (D), two such interpolating filters are required. In case of block-matching motion estimation algorithms, the match error of various candidate vectors depends on the quality of the sub-pixel interpolation filter(s). As these filters differ per fractional value of the vector, unintentional preferences for some fractional vector values over other may result. The candidate vectors (D) are split into an integer part (Rnd(D/2)) and a generally non-integer part (D-Rnd(D/2)), as this gives a better accuracy and a lower cost than splitting the candidate vectors (D) exactly conform the temporal position at which the vectors need to be valid.