Abstract:
According to an embodiment of the disclosure, the analyzer includes a reagent driving disk that accommodates a reagent configured for analysis and that transports the reagent to a desired position, and a fixed disk that has a reagent stand-by position in which to make a reagent container containing the reagent, temporarily stand by, and a magnetic particles stirring position for stirring magnetic particles. A portion of the reagent stand-by position is constituted by a loading system. A reagent container moving unit moves reagent containers containing the reagent, between the reagent driving unit and the fixed disk, according to analytical request status. Providing in a part of the fixed disk the loading system constructed so that reagent containers containing the reagent can be mounted therein during operation enables changing of reagent containers, irrespective of an operational status of the reagent driving disk, and the system to having cold-storage functionality.
Abstract:
According to an embodiment of the disclosure, the analyzer includes a reagent driving disk that accommodates a reagent configured for analysis and that transports the reagent to a desired position, and a fixed disk that has a reagent stand-by position in which to make a reagent container containing the reagent, temporarily stand by, and a magnetic particles stirring position for stirring magnetic particles. A portion of the reagent stand-by position is constituted by a loading system. A reagent container moving unit moves reagent containers containing the reagent, between the reagent driving unit and the fixed disk, according to analytical request status. Providing in a part of the fixed disk the loading system constructed so that reagent containers containing the reagent can be mounted therein during operation enables changing of reagent containers, irrespective of an operational status of the reagent driving disk, and the system to having cold-storage functionality.
Abstract:
A reagent vessel, an apparatus and a method for manufacturing a lower part of a reagent vessel for an analytical instrument are disclosed. The reagent vessel is configured to store a liquid reagent. The reagent vessel comprises a cover and a lower part. The lower part comprises a bottom wall, a front wall, a rear wall, two opposing side walls and at least one connection wall. The cover, bottom wall, front wall, rear wall and two opposing side walls define at least one internal volume for storing at least one liquid reagent. The two opposing side walls are at least partially connected to one another by the at least one connection wall located within the at least one internal volume. The connection wall is spaced apart from the bottom wall. The connection wall and at least the two opposing side walls can be injection-molded and are monolithically formed.
Abstract:
A method of monitoring detection of an analyte in a liquid sample using a measuring cell, the measuring cell comprising a working electrode for excitation of electrochemiluminescence in the liquid sample, an optical detector for detecting the excited electrochemiluminescence, the excitation and detection being performed in an measurement cycle, the measurement cycle comprising transporting the liquid sample via a transport path to the working electrode using a support liquid, the method comprising: coupling light of a light source into the transport path during part of the measurement cycle, the transport path forming a light guide between the light source and the optical detector, detecting the coupled light by the optical detector, analyzing the detected light for a gas bubble in the transport path, providing a measurement state if the result of the analysis deviates from a target state regarding the presence of a gas bubble in the transport path.
Abstract:
An automatic analyzer provided with a roller and a reagent container shoulder presser at the position where an operator inserts a reagent container into the automatic analyzer. The reagent container is pushed while the lid of the reagent container is made to touch the upper side of the roller and the shoulder presser is made to touch the shoulder of the reagent container, and the application of upward force to the lid causes the lid of the reagent container to be half open, after which the reagent container is inserted in the analyzer.
Abstract:
A reagent vessel holder for an analytical instrument is disclosed. The reagent vessel holder comprises at least one reagent vessel compartment for receiving a reagent vessel, wherein the reagent vessel compartment comprises a base and at least two lateral guiding elements, and at least one hollow needle for piercing the reagent vessel. The hollow needle is disposed on a front end of the reagent vessel compartment near the base and extends in a direction substantially parallel to the base. The lateral guiding elements are disposed so as to be adapted to slidably guide the reagent vessel in a direction substantially parallel to the direction, in which the hollow needle extends. The lateral guiding elements are adapted to receive the reagent vessel therebetween and are biased towards one another. Further, a reagent supply system for an analytical instrument and an analytical instrument comprising such a reagent vessel holder are disclosed.
Abstract:
A method of monitoring detection of an analyte in a liquid sample using a measuring cell, the measuring cell comprising a working electrode for excitation of electrochemiluminescence in the liquid sample, an optical detector for detecting the excited electrochemiluminescence, the excitation and detection being performed in an measurement cycle, the measurement cycle comprising transporting the liquid sample via a transport path to the working electrode using a support liquid, the method comprising: coupling light of a light source into the transport path during part of the measurement cycle, the transport path forming a light guide between the light source and the optical detector, detecting the coupled light by the optical detector, analyzing the detected light for a gas bubble in the transport path, providing a measurement state if the result of the analysis deviates from a target state regarding the presence of a gas bubble in the transport path.
Abstract:
A reagent vessel, an apparatus and a method for manufacturing a lower part of a reagent vessel for an analytical instrument are disclosed. The reagent vessel is configured to store a liquid reagent. The reagent vessel comprises a cover and a lower part. The lower part comprises a bottom wall, a front wall, a rear wall, two opposing side walls and at least one connection wall. The cover, bottom wall, front wall, rear wall and two opposing side walls define at least one internal volume for storing at least one liquid reagent. The two opposing side walls are at least partially connected to one another by the at least one connection wall located within the at least one internal volume. The connection wall is spaced apart from the bottom wall. The connection wall and at least the two opposing side walls can be injection-molded and are monolithically formed.
Abstract:
A reagent vessel holder for an analytical instrument is disclosed. The reagent vessel holder comprises at least one reagent vessel compartment for receiving a reagent vessel, wherein the reagent vessel compartment comprises a base and at least two lateral guiding elements, and at least one hollow needle for piercing the reagent vessel. The hollow needle is disposed on a front end of the reagent vessel compartment near the base and extends in a direction substantially parallel to the base. The lateral guiding elements are disposed so as to be adapted to slidably guide the reagent vessel in a direction substantially parallel to the direction, in which the hollow needle extends. The lateral guiding elements are adapted to receive the reagent vessel therebetween and are biased towards one another. Further, a reagent supply system for an analytical instrument and an analytical instrument comprising such a reagent vessel holder are disclosed.