摘要:
CMOS source/drain regions of both conductivity types are formed using only a single masking step. One dopant is applied to both types of source/drain regions, and a second dopant is applied at a much higher dose and energy to only one type of source/drain region.Preferably, boron and arsenic are used as the dopants in silicon, since the cooperative doping effect causes the boron in the counterdoped source/drain regions to be entirely contained within the arsenic diffusion.
摘要:
CMOS source/drain regions of both conductivity types are formed using only a single masking step. One dopant is applied to both types of source/drain regions, and a second dopant is applied at a much higher dose and energy to only one type of source/drain region. Preferably, boron and arsenic are used as the dopants in silicon, since the cooperative diffusion effect causes the boron in the counterdoped source/drain regions to be entirely contained within the arsenic diffusion.To avoid the erratic etching characteristics of heavily-doped polysilicon under chloro-etch, the patterned photoresist used to pattern the gates and gate-level interconnects is left in place during the P+ source/drain implant. Thus, moderately doped N-type polysilicon may be used, since it is not exposed to compensation by the P+ implant. Since no P+ source/drain mask is required, no double-level photoresist structure is created, and there is consequently no obstacle to reworks. In addition, positive resists may be used in practicing the present invention.
摘要:
In the manufacture of a CMOS device, oxide is etched away from polysilicon gate-level interconnects, and from source or drain regions of either conductivity type to which the polysilicon gate-level interconnect is desired to be connected. A metal is then deposited, and silicide is formed to connect the gate-level interconnect to the respective source and drain regions. To ensure continuity of the silicide connection, the gate oxide beneath the gate level interconnect is slightly undercut by a wet etching process, additional polysilicon is deposited conformally overall, and the additional polysilicon is anisotropically etched so that it is removed from all areas except those within the undercut region beneath the gate-level interconnect thus a continuous surface of silicon, from which a continuous layer of silicide is then grown, exists between the polysilicon gate-level interconnect and the respective source and drain regions. Thus, self-aligned contacts are created, and no unwanted pn junctions are created.
摘要:
In the manufacture of a CMOS device, oxide is etched away from polysilicon gate-level interconnects, and from source or drain regions of either conductivity type to which the polysilicon gate-level interconnect is desired to be connected. A metal is then deposited, and silicide is formed to connect the gate-level interconnect to the respective source and drain regions. To ensure continuity of the silicide connection, the gate oxide beneath the gate level interconnect is slightly undercut by a wet etching process, additional polysilicon is deposited conformally overall, and the additional polysilicon is anistropically etched so that it is removed from all areas except those within the undercut region beneath the gate-level interconnect thus a continuous surface of silicon, from which a continuous layer of silicide is then grown, exists between the polysilicon gate-level interconnect and the respective source and drain regions. Thus, self-aligned contacts are created, and no unwanted pn junctions are created.
摘要:
Direct Moat Isolation for VLSI integrated circuit structures is formed by growing oxide over the entire substrate area, and then cutting windows in the oxide, using an anisotropic polymer-free oxide etch, where moat regions are to be formed. To prevent polysilicon filamentation, gate patterning is performed with an extremely selective polysilicon etch. The combination of these processing steps permits a direct moat isolation device fabrication process which is insensitive to the oxide sidewall angle, increasing yield and permitting extremely compact isolation structures to be formed.