Abstract:
Container capacitor structure and method of construction. An etch mask and etch are used to expose portions of an exterior surface of an electrode (“bottom electrodes”) of the structure. The etch provides a recess between proximal pairs of container capacitor structures, which is available for forming additional capacitance. A capacitor dielectric and top electrode are formed on and adjacent to, respectively, both an interior surface and portions of the exterior surface of the first electrode. Surface area common to both the first electrode and second electrodes is increased over using only the interior surface, providing additional capacitance without decreasing spacing for clearing portions of the capacitor dielectric and the second electrode away from a contact hole location. Clearing of the capacitor dielectric and the second electrode portions may be done at an upper location of a substrate assembly in contrast to clearing at a bottom location of a contact via.
Abstract:
Disclosed is a container capacitor structure and method of constructing it. An etch mask and etch are used to expose portions of an exterior surface of electrode (“bottom electrodes”) of the container capacitor structure. The etch provides a recess between proximal pairs of container capacitor structures, which recess is available for forming additional capacitance. Accordingly, a capacitor dielectric and a top electrode are formed on and adjacent to, respectively, both an interior surface and portions of the exterior surface of the first electrode. Advantageously, surface area common to both the first electrode and second electrodes is increased over using only the interior surface, which provides additional capacitance without a decrease in spacing for clearing portions of the capacitor dielectric and the second electrode away from a contact hole location. Furthermore, such clearing of the capacitor dielectric and the second electrode portions may be done at an upper location of a substrate assembly in contrast to clearing at a bottom location of a contact via.
Abstract:
Disclosed is a container capacitor structure and method of constructing it. An etch mask and etch are used to expose portions of an exterior surface of electrode (“bottom electrodes”) of the container capacitor structure. The etch provides a recess between proximal pairs of container capacitor structures, which recess is available for forming additional capacitance. Accordingly, a capacitor dielectric and a top electrode are formed on and adjacent to, respectively, both an interior surface and portions of the exterior surface of the first electrode. Advantageously, surface area common to both the first electrode and second electrodes is increased over using only the interior surface, which provides additional capacitance without a decrease in spacing for clearing portions of the capacitor dielectric and the second electrode away from a contact hole location. Furthermore, such clearing of the capacitor dielectric and the second electrode portions may be done at an upper location of a substrate assembly in contrast to clearing at a bottom location of a contact via.
Abstract:
Method for forming at least a portion of a top electrode of a container capacitor and at least a portion of a contact plug in one deposition are described. In one embodiment, the top electrode is formed interior to a bottom electrode of the container capacitor. In another embodiment, the top electrode is formed interior to, and exterior and below a portion of the bottom electrode of the container capacitor. The method of forming a top electrode of a container capacitor and a contact plug with a same deposition is particularly well-suited for high-density memory array formation.
Abstract:
Disclosed is a container capacitor structure and method of constructing it. An etch mask and etch are used to expose portions of an exterior surface of electrode (“bottom electrodes”) of the container capacitor structure. The etch provides a recess between proximal pairs of container capacitor structures, which recess is available for forming additional capacitance. Accordingly, a capacitor dielectric and a top electrode are formed on and adjacent to, respectively, both an interior surface and portions of the exterior surface of the first electrode. Advantageously, surface area common to both the first electrode and second electrodes is increased over using only the interior surface, which provides additional capacitance without a decrease in spacing for clearing portions of the capacitor dielectric and the second electrode away from a contact hole location. Furthermore, such clearing of the capacitor dielectric and the second electrode portions may be done at an upper location of a substrate assembly in contrast to clearing at a bottom location of a contact via.
Abstract:
This invention constitutes a method for narrowing threshold voltage distribution among the individual cells of a block erased flash memory array by firstly, preprogramming cells within the block be erased to a level of saturation using hot electron injection to drive a surplus of electrons into the floating gate of each cell; secondly, subjecting all cells with the block to a first erase pulse which causes the surplus electrons within the floating gate of each cell to be driven into the cell's source region via Fowler-Nordheim tunneling, with the erase pulse being of sufficient length to erase every cell within the block; thirdly, subjecting all cells within the block to a word line stress step or a soft programming step, by means of which some electrons are driven back into the floating gate of each cell via Fowler-Nordheim tunneling or hot electron injection, respectively; and, fourthly, subjecting all cells within the block to a second erase pulse, the second erase pulse being at least an order of magnitude shorter than the first erase pulse. Use of the second erase pulse following the word line stress step not only shifts the threshold voltage distribution to a somewhat lower level, but also compresses the distribution. Since compression on the high side of the curve is greater than on the low side, the length of the second erase pulse can be tailored to fit the characteristics of a particular flash memory.
Abstract:
A flash memory array comprises a primary row line and a redundant row line each having memory cells therealong. A method of accessing the flash memory array comprises preprogramming all said memory cells. Next, all memory cells are erased simultaneously. Subsequently, all memory cells along the primary row line are programmed and the cells along the redundant row line are selectively programmed. The primary row line is bypassed during any read cycle.
Abstract:
The present invention provides improved programmability of antifuse elements by utilizing local enhancement of an underlying diffusion region. During an existing fabrication of a semiconductor device using antifuse elements after the access lines (usually word lines) are formed, a self-aligning trench is etched between two neighboring access lines thereby severing an underlying diffusion region. Following an etch back of the access lines' spacers a low energy, heavy dose implant dopes the exposed edges of the diffusion region resulting from the spacer etch back, as well as the bottom of the trench. An antifuse dielectric is formed followed by placing of a second conductive access line (usually the source lines) thus filling the trench to serve as the programmable antifuse element. The heavily doped areas in the diffusion region will now allow a reduction in programming voltage level, while providing a sufficient rupture of the antifuse dielectric.
Abstract:
Floating gate transistors and methods of forming the same are described. In one implementation, a floating gate is formed over a substrate. The floating gate has an inner first portion and an outer second portion. Conductivity enhancing impurity is provided in the inner first portion to a greater concentration than conductivity enhancing impurity in the outer second portion. In another implementation, the floating gate is formed from a first layer of conductively doped semiconductive material and a second layer of substantially undoped semiconductive material. In another implementation, the floating gate is formed from a first material having a first average grain size and a second material having a second average grain size which is larger than the first average grain size.
Abstract:
Disclosed is a container capacitor structure and method of constructing it. An etch mask and etch are used to expose portions of an exterior surface of electrode (“bottom electrodes”) of the container capacitor structure. The etch provides a recess between proximal pairs of container capacitor structures, which recess is available for forming additional capacitance. Accordingly, a capacitor dielectric and a top electrode are formed on and adjacent to, respectively, both an interior surface and portions of the exterior surface of the first electrode. Advantageously, surface area common to both the first electrode and second electrodes is increased over using only the interior surface, which provides additional capacitance without a decrease in spacing for clearing portions of the capacitor dielectric and the second electrode away from a contact hole location. Furthermore, such clearing of the capacitor dielectric and the second electrode portions may be done at an upper location of a substrate assembly in contrast to clearing at a bottom location of a contact via.