摘要:
The process is characterised in that it comprises at least one sol-gel layer with a maximum thickness of 800 nm, where said sol-gel layer comprises nanoparticles with a laminar crystal structure, and where each sol-gel layer is obtained from a silicon alkoxide solution; preparation of a dispersion that comprises at least one type of particles with a spherical, fibrillar or laminar morphology, and a laminar crystal structure, wherein at least one of the dimensions, thickness or diameter, of said particles is less than 400 nm; addition of the dispersion prepared to the solution; deposition of the suspension on said substrate; thermal treatment of the substrate; and, in the case of multilayer coatings, optionally, the addition of high-dimensional particles and repetition of the steps, provided that the thermal treatment of the last layer, or outer layer, is performed at a temperature equal to or greater than that of the preceding layer. The invention also relates to the sol-gel coating thus obtained.The present invention solves the problem of contraction in the densification of high-thickness sol-gel coatings and, moreover, provides a process for obtaining a sol-gel coating useful for ceramic surfaces with a large size and/or complex shapes.
摘要:
Techniques for forming devices, such as transistors, having vertical junction edges. More specifically, shallow trenches are formed in a substrate and filled with an oxide. Cavities may be formed in the oxide and filled with a conductive material, such a doped polysilicon. Vertical junctions are formed between the polysilicon and the exposed substrate at the trench edges such that during a thermal cycle, the doped polysilicon will out-diffuse doping elements into the adjacent single crystal silicon advantageously forming a diode extension having desirable properties.
摘要:
The present invention relates to methods for forming microelectronic structures in a semiconductor substrate. The method includes selectively removing dielectric material to expose a portion of an oxide overlying a semiconductor substrate. Insulating material may be formed substantially conformably over the oxide and remaining portions of the dielectric material. Spacers may be formed from the insulating material. An isolation trench etch follows the spacer etch. An optional thermal oxidation of the surfaces in the isolation trench may be performed, which may optionally be followed by doping of the bottom of the isolation trench to further isolate neighboring active regions on either side of the isolation trench. A conformal material may be formed substantially conformably over the spacer, over the remaining portions of the dielectric material, and substantially filling the isolation trench. Planarization of the conformal material may follow.
摘要:
The present invention relates to methods for forming microelectronic structures in a semiconductor substrate. The method includes selectively removing dielectric material to expose a portion of an oxide overlying a semiconductor substrate. Insulating material may be formed substantially conformably over the oxide and remaining portions of the dielectric material. Spacers may be formed from the insulating material. An isolation trench etch follows the spacer etch. An optional thermal oxidation of the surfaces in the isolation trench may be performed, which may optionally be followed by doping of the bottom of the isolation trench to further isolate neighboring active regions on either side of the isolation trench. A conformal material may be formed substantially conformably over the spacer, over the remaining portions of the dielectric material, and substantially filling the isolation trench. Planarization of the conformal material may follow.
摘要:
An apparatus including an expandable body; at least one delivery cannula coupled to an exterior portion of the expandable body; a needle having a protuberance thereon disposed in a lumen of the at least one delivery cannula; a stop disposed in the lumen of the at least one delivery cannula at a position distal to the protuberance on the needle. A method including positioning a catheter assembly including at least one needle delivery device disposed in an at least one delivery cannula, the at least one delivery cannula having an exit end; modifying the shape of the catheter assembly to modify the orientation of the exit end of the at least one delivery cannula at a region of interest; and advancing the at least one needle delivery device beyond the exit end of the at least one delivery cannula according to a controlled orientation.
摘要:
A capacitor-less memory cell, memory device, system and process of forming the capacitor-less memory cell includes forming the memory cell in an active area of a substantially physically isolated portion of the bulk semiconductor substrate. A pass transistor is formed on the active area for coupling with a word line. The capacitor-less memory cell further includes a read/write enable transistor vertically configured along at least one vertical side of the active area and operable during a reading of a logic state with the logic state being stored as charge in a floating body area of the active area, causing different determinable threshold voltages for the pass transistor.
摘要:
A semiconductor magnetic memory device has a magnetic tunneling junction formed over a memory cell. The memory cell has a control gate surrounded by a floating gate. The floating gate is coupled to the magnetic tunneling junction through a pinning layer that maintains the magnetic orientation of the lower magnetic layer of the junction. A current through a selected word line, coupled to the control gate, generates a first magnetic field. A current through a cell select line generates a second magnetic field that is orthogonal to the first magnetic field. This changes the magnetic orientation of the upper magnetic layer of the junction to lower its resistance, thus allowing a write/erase voltage on a program/erase line to program/erase the floating gate.
摘要:
An embodiment includes a process of forming a gate stack that acts to resist the redeposition to the semiconductive substrate of mobilized metal such as from a metal gate electrode. An embodiment also relates to a system that achieves the process. An embodiment also relates to a gate stack structure that provides a composition that resists the redeposition of metal during processing and field use.
摘要:
A silicon-on-insulator device has a localized biasing structure formed in the insulator layer of the SOI. The localized biasing structure includes a patterned conductor that provides a biasing signal to distinct regions of the silicon layer of the SOI. The conductor is recessed into the insulator layer to provide a substantially planar interface with the silicon layer. The conductor is connected to a bias voltage source. In an embodiment, a plurality of conductor is provided that respectively connected to a plurality of voltage sources. Thus, different regions of the silicon layer are biased by different bias signals.
摘要:
A silicon-on-insulator device has a localized biasing structure formed in the insulator layer of the SOI. The localized biasing structure includes a patterned conductor that provides a biasing signal to distinct regions of the silicon layer of the SOI. The conductor is recessed into the insulator layer to provide a substantially planar interface with the silicon layer. The conductor is connected to a bias voltage source. In an embodiment, a plurality of conductor is provided that respectively connected to a plurality of voltage sources. Thus, different regions of the silicon layer are biased by different bias signals.