Abstract:
The invention concerns an optical colored glass with a composition (in percent by weight based on oxide) of SiO2 30–75; K2O 5–35; B2O3>4–17; ZnO 5–37; F 0.01–10; CdO 0.1–1, S+Se+Te 0.1–1.5 as well as the use of this glass as a long-pass cutoff filter.
Abstract:
The invention relates to a method for manufacturing optical glasses and coloured glasses with the aid of a fluid phase sintering process from a basic material encompassing at least SiO2 powder as well as additives for reducing the temperature of the fluid phase sintering and/or melting process encompassing the following steps: the starting materials are dissolved in any sequence in a fluid medium to produce a solution as far as is possible and a suspension to the extent that they are not dispersed in solution; a greenbody is produced from the dissolved and dispersed starting materials; the greenbody is dried the dried greenbody is fluid-phase sintered at temperatures below 1200° C., in particular in the temperature range from 600° C. to 1200° C.
Abstract:
SiO2—TiO2 glasses having a low coefficient of thermal expansion are produced by a molding being produced that consists of SiO2 powder, SiO2—TiO2 powder or TiO2 powder and that contains by way of secondary component a titanium-containing component which is converted into amorphous TiO2.
Abstract:
A method of producing glass bodies having regions with different optical refraction, including a basic body and a coating layer which is sintered onto the basic body, covers the basic body at least partially and is made of glass, which as it is doped, has an index of refraction differing from that of the glass of the basic body. The starting material for producing the cladding on the basis of pulverulent ceramic material is deformed into a self-supporting, unsintered porous green body, is dried and submitted to a cleaning procedure in a heated gas phase. The coating layer to be bonded onto the basic body is melted into glass in a subsequent combined doping/sintering procedure in a gas phase containing the doping agent at a temperature in the range from 1150.degree. to 1500.degree. C. and is sintered onto the basic body.
Abstract:
An electrophotographic recording material having a porous layer of photoconductor-binder, particularly with crystalline tetragonal lead monoxide as the photoconductor, is provided between an electrically conductive layer and a dielectric foil, said pores of the layer of photoconductor-binder, prior to providing the foil, being filled with a high-ohmic dielectric liquid to wet both the layer of photoconductor-binder and the foil. Preferably, the pores of the layer are filled with tetramethyl tin as the photoconductor-binder. As a result of this, the use of an adhesive between the foil and the layer of photoconductor-binder may be omitted. A large porosity and hence a great sensitivity of the layer of photoconductor-binder are maintained.
Abstract:
A layer which is obtained by thermal treatment from an aqueous dispersion applied to a substrate, the dispersion containing silicon/titanium mixed oxide powder prepared by flame hydrolysis. It is prepared by applying a dispersion which contains the silicon/titanium mixed oxide powder to a substrate and then sintering by using a thermal treatment. It can be used, for example, on materials with very low coefficients of expansion.
Abstract:
An optical colored glass with a composition (in percent by weight based on oxide) of SiO2 30-75; K2O 5-35; TiO2 0-5; B2O3>4-17; ZnO 5-37; F 0.01-10 MIMIIIY2II 0.1-3, whereby MI=Cu+, Ag+, MIII=In3+, Ga3+, Al3+, YII=S2−, Se2−, Te2−, as well as the use of this glass as a long-pass cutoff filter.
Abstract translation:具有SiO 2 30-75的组成(以氧化物的重量%计)的光学着色玻璃; K2O 5-35; TiO2 0-5; B2O3> 4-17; ZnO 5-37; F 0.01-10 M M III III = 0.1-3,由此M I = Cu +,Ag +,M III = In 3+,Ga 3 +,Al 3+,Y II = S 2-,Se <2-> Te <2->,以及使用该玻璃作为长通截止滤光片。
Abstract:
Devices for and a method of manufacturing glass bodies, in which a porous green body is formed from the starting material for the glass body, being an aqueous suspension comprising a highly disperse solids content, which green body is then purified and sintered, and deposited by separating the phases of the suspension through electrophoresis, in such a manner that the solids content of the suspension is deposited on a porous deposition membrane having pores whose diameter is smaller than the average particle diameter of the solid particles present in the suspension, said membrane being arranged between the anode and the cathode, and the space between said membrane and the anode being filled with an electrically conducting liquid, a porous auxiliary membrane being arranged between and at a distance from the deposition membrane and the cathode, said auxiliary membrane having pores with a diameter which is smaller than the average particle diameter of the solid particles present in the suspension, and the space between the auxiliary membrane and the cathode being filled with an electrically conducting liquid and/or the electrodes bringing about the electrophoresis being arranged in such a manner with respect to the suspension that the direction of movement of the suspended particles and the gravitational field acting on the particles extend parallel to each other.
Abstract:
A method of manufacturing glass bodies, in which the starting material for the glass body, being an extrusion mass consisting of microdispersed SiO.sub.2 particles, a binder and a dispersing liquid, is used to form a porous green body by extrusion, which is subsequently dried, purified and sintered, the extrusion mass, which is shaped by the nozzle of an extruder, being extruded into a transfer vessel in which the extruded body is tempered towards the gelification point of the binder present in the extrusion mass, a liquid being contained in the transfer vessel, which cannot or substantially not be mixed with the dispersing liquid present in the extrusion mass, and which cannot be mixed with the binder present in the extrusion mass; and an arrangement for carrying out this method.
Abstract:
A method of manufacturing rotationally symmetrical glass bodies. The starting material for the glass body is a thixotropic suspension consisting of powered glass in a liquid dispersing agent. The suspension is introduced into a hollow mold whose geometry corresponds to that of the glass body to be formed. The hollow mold is rotated about its longitudinal axis to deposit the suspension on the inner wall of the hollow mold. The after which the green body thus formed is purified and sintered. The green body is formed by heating the rotating mold and the suspension therein to a temperature below the boiling point of the dispersing liquid until cross-linking and solidification of the starting material is obtained. Thereafter, the green body can be removed from the hollow mold.