Abstract:
A braided insitu consolidated structure of fiber reinforced thermoplastic resin strands is formed by braiding the strands on a mandrel and then advancing the mandrel and the braided structure as it is formed continuously through a heating zone to heat the resin to a flowable condition then cooling the structure as it leaves the zone. Pressure may be applied or developed against the braided structure during its formation.
Abstract:
A braided insitu consolidated structure of fiber reinforced thermoplastic resin strands is formed by braiding the strands on a mandrel and then advancing the mandrel and the braided structure as it is formed continuously through a heating zone to heat the resin to a flowable condition then cooling the structure as it leaves the zone. Pressure may be applied or developed against the braided structure during its formation.
Abstract:
A braided in-situ consolidated structure of fiber reinforced thermoplastic resin strands is formed by braiding the strands on a mandrel and then advancing the mandrel and the braided structure as it is formed continuously through a heating zone to heat the resin to a flowable condition then cooling the structure as it leaves the zone. Pressure may be applied or developed against the braided structure during its formation.
Abstract:
A complex braided composite structure is formed of axial and braiding yarns using an interlacing pattern which allows all braiding yarn reversals to occur outside a multi-layer array of axial yarns concurrently at one location in the pattern thus allowing free manipulation of the yarns for forming complex shapes.
Abstract:
A centrifuge rotor which a central hub is characterized by a flexible carrier formed from a plurality of fibers arranged in a predetermined textile structure. The carrier has a socket formed at the radially outer end thereof by the interconnection of the fibers. The socket may receive a vessel therein.
Abstract:
Implants with hydrogel layers reinforced by three-dimensional fiber arrays can replace hyaline cartilage. Such implants should replace an entire cartilage segment, rather than creating a crevice around a plug, so these implants must be thin and flat, they must cover large areas, the tips of any tufts or stitches must not reach the hydrogel surface, and they must be flexible, for arthroscopic insertion. The use of computerized stitching machines to create such arrays enables a redesigned and modified test sample to be made with no delays, and no overhead or startup costs. This provides researchers with improved tools for making and testing implants that will need to go through extensive in vitro, animal, and human testing before they can be approved for sale and use. Fiber-reinforced hydrogels also can be secured to strong shape-memory rims, for securing anchoring to bones.
Abstract:
The endoprosthetic textile scaffold (1) according to an embodiment of the invention includes a first weave (10) substantially planar, including a warp (11) oriented in a first direction (D10) and a weft (13) oriented perpendicularly to the first direction, and a second weave (20) substantially planar, including a warp (21) oriented in a second direction (D20) and a weft (23) oriented perpendicularly to the second direction. The second weave is arranged and bound to the first weave so that the first and second weaves are superimposed in a parallel manner, with the first direction being non-parallel to the second direction.
Abstract:
Implants with hydrogel layers reinforced by three-dimensional fiber arrays can replace hyaline cartilage. Such implants should replace an entire cartilage segment, rather than creating a crevice around a plug, so these implants must be thin and flat, they must cover large areas, the tips of any tufts or stitches must not reach the hydrogel surface, and they must be flexible, for arthroscopic insertion. The use of computerized stitching machines to create such arrays enables a redesigned and modified test sample to be made with no delays, and no overhead or startup costs. This provides researchers with improved tools for making and testing implants that will need to go through extensive in vitro, animal, and human testing before they can be approved for sale and use. Fiber-reinforced hydrogels also can be secured to strong shape-memory rims, for securing anchoring to bones.
Abstract:
A method for stretch breaking fibers to produce a staple yarn and operating a staple fiber spinning machine, and an apparatus for performing such method, that enables the production of a plurality of products of lot size smaller than a large denier tow product. The process includes at least two break zones and a consolidation zone downstream from a second break zone to form a staple yarn. The filaments are broken in a second break zone downstream from the first break zone by increasing the speed of the fiber fed into the process.
Abstract:
The invention concerns a method of forming a fabric of interlaced yarn by arranging on a surface a plurality of yarn guide blocks, each guide block adapted to guide yarn from a yarn source to the surface and wherein the relative motion of the yarn guide blocks and surface serves to deposit yarn from the guides onto the surface in such a way that when said yarns are deposited on a surface, the diagonal positions of the yarns from one block are offset from a direct overlapping alignment with the yarns from the remaining blocks to thereby densely cover the surface during repeated cycles of such motion.