摘要:
A panoramic camera is configured to automatically determine parameters of a table upon which the camera is situated as well as positional information of the camera relative to the table. In an initialization stage, table edges are detected to create an edge map. A Hough transformation-like symmetry voting operation is performed to clean up the edge map and to determine camera offset, camera orientation and camera tilt. The table is then fit to a table model to determine table parameters. In an operational stage, table edges are detected to create an edge map and the table model is fit to the edge map. The output can then be used for further panoramic image processing such as head size normalization, zooming, compensation for camera movement, etc.
摘要:
A real-time approximately 360 degree image correction system and a method for alleviating distortion and perception problems in images captured by omni-directional cameras. In general, the real-time panoramic image correction method generates a warp table from pixel coordinates of a panoramic image and applies the warp table to the panoramic image to create a corrected panoramic image. The corrections are performed using a parametric class of warping functions that include Spatially Varying Uniform (SVU) scaling functions. The SVU scaling functions and scaling factors are used to perform vertical scaling and horizontal scaling on the panoramic image pixel coordinates. A horizontal distortion correction is performed using the SVU scaling functions at at least two different scaling factors. This processing generates a warp table that can be applied to the panoramic image to yield the corrected panoramic image. In one embodiment the warp table is concatenated with a stitching table used to create the panoramic image.
摘要:
A real-time approximately 360 degree image correction system and a method for alleviating distortion and perception problems in images captured by omni-directional cameras. In general, the real-time panoramic image correction method generates a warp table from pixel coordinates of a panoramic image and applies the warp table to the panoramic image to create a corrected panoramic image. The corrections are performed using a parametric class of warping functions that include Spatially Varying Uniform (SVU) scaling functions. The SVU scaling functions and scaling factors are used to perform vertical scaling and horizontal scaling on the panoramic image pixel coordinates. A horizontal distortion correction is performed using the SVU scaling functions at at least two different scaling factors. This processing generates a warp table that can be applied to the panoramic image to yield the corrected panoramic image. In one embodiment the warp table is concatenated with a stitching table used to create the panoramic image.
摘要:
A system that captures both whiteboard content and audio signals of a meeting using a digital camera and a microphone. The system can be retrofit to any existing whiteboard. It computes the time stamps of pen strokes on the whiteboard by analyzing the sequence of captured snapshots. It also automatically produces a set of key frames representing all the written content on the whiteboard before each erasure. The whiteboard content serves as a visual index to efficiently browse the audio meeting. The system not only captures the whiteboard content, but also helps the users to view and manage the captured meeting content efficiently and securely.
摘要:
A real-time approximately 360 degree image correction system and a method for alleviating distortion and perception problems in images captured by omni-directional cameras. In general, the real-time panoramic image correction method generates a warp table from pixel coordinates of a panoramic image and applies the warp table to the panoramic image to create a corrected panoramic image. The corrections are performed using a parametric class of warping functions that include Spatially Varying Uniform (SVU) scaling functions. The SVU scaling functions and scaling factors are used to perform vertical scaling and horizontal scaling on the panoramic image pixel coordinates. A horizontal distortion correction is performed using the SVU scaling functions at at least two different scaling factors. This processing generates a warp table that can be applied to the panoramic image to yield the corrected panoramic image. In one embodiment the warp table is concatenated with a stitching table used to create the panoramic image.
摘要:
A system that captures both whiteboard content and audio signals of a meeting using a digital camera and a microphone. The system can be retrofit to any existing whiteboard. It computes the time stamps of pen strokes on the whiteboard by analyzing the sequence of captured snapshots. It also automatically produces a set of key frames representing all the written content on the whiteboard before each erasure. The whiteboard content serves as a visual index to efficiently browse the audio meeting. The system not only captures the whiteboard content, but also helps the users to view and manage the captured meeting content efficiently and securely.
摘要:
A system that captures both whiteboard content and audio signals of a meeting using a digital camera and a microphone. The system can be retrofit to any existing whiteboard. It computes the time stamps of pen strokes on the whiteboard by analyzing the sequence of captured snapshots. It also automatically produces a set of key frames representing all the written content on the whiteboard before each erasure. The whiteboard content serves as a visual index to efficiently browse the audio meeting. The system not only captures the whiteboard content, but also helps the users to view and manage the captured meeting content efficiently and securely.
摘要:
A real-time approximately 360 degree image correction system and a method for alleviating distortion and perception problems in images captured by omni-directional cameras. In general, the real-time panoramic image correction method generates a warp table from pixel coordinates of a panoramic image and applies the warp table to the panoramic image to create a corrected panoramic image. The corrections are performed using a parametric class of warping functions that include Spatially Varying Uniform (SVU) scaling functions. The SVU scaling functions and scaling factors are used to perform vertical scaling and horizontal scaling on the panoramic image pixel coordinates. A horizontal distortion correction is performed using the SVU scaling functions at at least two different scaling factors. This processing generates a warp table that can be applied to the panoramic image to yield the corrected panoramic image. In one embodiment the warp table is concatenated with a stitching table used to create the panoramic image.
摘要:
A panoramic camera is configured to automatically determine parameters of a table upon which the camera is situated as well as positional information of the camera relative to the table. In an initialization stage, table edges are detected to create an edge map. A Hough transformation-like symmetry voting operation is performed to clean up the edge map and to determine camera offset, camera orientation and camera tilt. The table is then fit to a table model to determine table parameters. In an operational stage, table edges are detected to create an edge map and the table model is fit to the edge map. The output can then be used for further panoramic image processing such as head size normalization, zooming, compensation for camera movement, etc.
摘要:
Multi-modal, multi-lingual devices can be employed to consolidate numerous items including, but not limited to, keys, remote controls, image capture devices, audio recorders, cellular telephone functionalities, location/direction detectors, health monitors, calendars, gaming devices, smart home inputs, pens, optical pointing devices or the like. For example, a corner of a cellular telephone can be used as an electronic pen. Moreover, the device can be used to snap multiple pictures stitching them together to create a panoramic image. A device can automate ignition of an automobile, initiate appliances, etc. based upon relative distance. The device can provide for near to eye capabilities for enhanced image viewing. Multiple cameras/sensors can be provided on a single device to provide for stereoscopic capabilities. The device can also provide assistance to blind, privacy, etc. by consolidating services.