摘要:
The present disclosure relates to active drug eluting angioplasty balloon which utilizes ultrasonic energy to facilitate the release of the bioactive drug thereby avoids many of the drawbacks of prior art drug eluting devices.
摘要:
An ablation device, including a catheter and an ablation element incorporating one or more balloons at the distal end of the catheter, has a continuous passageway extending through it from the proximal end of the catheter to the distal side of the expandable ablation element. The ablation device ablates tissue by subjecting it to ultrasound energy, cryogenic energy, chemical, laser beam, microwave, or radiation energy. A probe carrying electrodes is introduced through this passageway and deploys, under the influence of its own resilience, to a structure incorporating a loop which is automatically aligned with the axis of the expandable ablation device, so that minimal manipulation is required to place the probe. Pulmonary vein potential is monitored in real time via the electrodes. The probe may have an atraumatic tip with a ball formed at the leading edge. The atraumatic tip prevents any tissue damage such as perforation of heart wall.
摘要:
An elastomeric compression unit forming a balloon protector for a catheter and a catheter system having the balloon protector are disclosed. The balloon protector is formed of an elastomeric tube, preferably silicone, lined with lubricious material. The lubricious lining may be a coating such as silicone or may be a Teflon.TM. tube. The Teflon.TM. tube is split longitudinally, so that the compressive forces of the protector are transmitted through it to the balloon. In the preferred embodiment, the split is made tangential to the inner surface of the Teflon.TM. tube. In the catheter system, the inner lumen is preferably non-compressible, or a stylet is inserted within it to preclude its compression.
摘要:
Treatment of heart failure in a patient by electrically modulating both the sympathetic and parasympathetic autonomic cardiac nerve fibers that innervate the patient's heart at an extravascular site in the pericardial space of the heart. The extravascular site is any suitable single location inside the chest cavity that carries both sympathetic and parasympathetic cardiac nerves such as the cardiac plexus or the pericardial transverse sinus or any two separate extravascular sites with one site carrying predominantly sympathetic cardiac nerves and the other site carrying predominantly parasympathetic cardiac nerves for electrically modulating the balance of autonomic cardiac nerve control. Physiologic inputs from a neuromodulation system's own sensors or from separate implanted or external cardiovascular hemodynamic sensor systems can be used for closed loop control over the balance of sympathetic and parasympathetic cardiac autonomic effects on the patient's cardiac function in real time response to chronic and transient physiologic needs.
摘要:
A cardiac ablation device, including a steerable catheter (10) and an expandable ablation element (18) incorporating one or more balloons (20,22) at the distal end of the catheter, has a continuous passageway (28, 30) extending through it from the proximal end of the catheter to the distal side of the expandable ablation element. A probe (72) carrying electrodes is introduced through this passageway and deploys, under the influence of its own resilience, to a structure incorporating a loop (82) which is automatically aligned with the axis of the expandable ablation device, so that minimal manipulation is required to place the sensor probe.
摘要:
A cardiac ablation device, including a steerable catheter (10) and an expandable ablation element (18) incorporating one or more balloons (20, 22) at the distal end of the catheter, has a continuous passageway (28, 30) extending through it from the proximal end of the catheter to the distal side of the expandable ablation element. A probe (72) carrying electrodes is introduced through this passageway and deploys, under the influence of its own resilience, to a structure incorporating a loop (82) which is automatically aligned with the axis of the expandable ablation device, so that minimal manipulation is required to place the sensor probe.
摘要:
A cardiac ablation device, including a steerable catheter (10) and an expandable ablation element (18) incorporating one or more balloons (20,22) at the distal end of the catheter, has a continuous passageway (28, 30) extending through it from the proximal end of the catheter to the distal side of the expandable ablation element. A probe (72) carrying electrodes is introduced through this passageway and deploys, under the influence of its own resilience, to a structure incorporating a loop (82) which is automatically aligned with the axis of the expandable ablation device, so that minimal manipulation is required to place the sensor probe.
摘要:
A cardiac ablation device, including a steerable catheter (10) and an expandable ablation element (18) incorporating one or more balloons (20, 22) at the distal end of the catheter, has a continuous passageway (28, 30) extending through it from the proximal end of the catheter to the distal side of the expandable ablation element. A probe (72) carrying electrodes is introduced through this passageway and deploys, under the influence of its own resilience, to a structure incorporating a loop (82) which is automatically aligned with the axis of the expandable ablation device, so that minimal manipulation is required to place the sensor probe.
摘要:
An ablation device, including a catheter and an ablation element incorporating one or more balloons at the distal end of the catheter, has a continuous passageway extending through it from the proximal end of the catheter to the distal side of the expandable ablation element. The ablation device ablates tissue by subjecting it to ultrasound energy, cryogenic energy, chemical, laser beam, microwave, or radiation energy. A probe carrying electrodes is introduced through this passageway and deploys, under the influence of its own resilience, to a structure incorporating a loop which is automatically aligned with the axis of the expandable ablation device, so that minimal manipulation is required to place the probe. Pulmonary vein potential is monitored in real time via the electrodes. The probe may have an atraumatic tip with a ball formed at the leading edge. The atraumatic tip prevents any tissue damage such as perforation of heart wall.