BIOINFORMATICS COMPUTATION USING A MAPRREDUCE-CONFIGURED COMPUTING SYSTEM
    1.
    发明申请
    BIOINFORMATICS COMPUTATION USING A MAPRREDUCE-CONFIGURED COMPUTING SYSTEM 审中-公开
    使用映射配置计算系统进行生物计算

    公开(公告)号:US20080133474A1

    公开(公告)日:2008-06-05

    申请号:US11564983

    申请日:2006-11-30

    IPC分类号: G06F17/30

    CPC分类号: G16B30/00 G16B50/00

    摘要: A MapReduce architecture may be utilized for sequence alignment algorithm processing (such as BLAST or BLAST-like algorithms). In addition, a MapReduce architecture may be extended such that memory of the computing devices of a MapReduce-configured system may be shared between different jobs of sequence alignment and/or other bioinformatics algorithm processing, thereby reducing overhead associated with executing such jobs using the MapReduce-configured system.

    摘要翻译: MapReduce架构可用于序列比对算法处理(如BLAST或BLAST类算法)。 此外,MapReduce架构可以被扩展,使得MapReduce配置的系统的计算设备的存储器可以在序列对准和/或其他生物信息学算法处理的不同作业之间共享,从而减少与使用MapReduce执行这样的作业相关联的开销 配置系统。

    MapReduce for distributed database processing
    2.
    发明授权
    MapReduce for distributed database processing 有权
    MapReduce用于分布式数据库处理

    公开(公告)号:US08190610B2

    公开(公告)日:2012-05-29

    申请号:US11539090

    申请日:2006-10-05

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30584 Y10S707/968

    摘要: An input data set is treated as a plurality of grouped sets of key/value pairs, which enhances the utility of the MapReduce programming methodology. By utilizing such a grouping, map processing can be carried out independently on two or more related but possibly heterogeneous datasets (e.g., related by being characterized by a common primary key). The intermediate results of the map processing (key/value pairs) for a particular key can be processed together in a single reduce function by applying a different iterator to intermediate values for each group. Different iterators can be arranged inside reduce functions in ways however desired.

    摘要翻译: 输入数据集被视为多个分组的键/值对集合,这增强了MapReduce编程方法的实用性。 通过利用这样的分组,可以在两个或更多个相关但可能异质的数据集上独立地执行地图处理(例如,通过由公共主键表征)相关联。 通过将不同的迭代器应用于每个组的中间值,可以在单个减少函数中一起处理特定密钥的映射处理(密钥/值对)的中间结果。 减少功能内的不同迭代器可以以所需的方式排列。

    MAP-REDUCE WITH MERGE TO PROCESS MULTIPLE RELATIONAL DATASETS
    3.
    发明申请
    MAP-REDUCE WITH MERGE TO PROCESS MULTIPLE RELATIONAL DATASETS 有权
    MAP-REDUCE与MERGE处理多个关系数据

    公开(公告)号:US20080120314A1

    公开(公告)日:2008-05-22

    申请号:US11560523

    申请日:2006-11-16

    IPC分类号: G06F7/00

    摘要: A method of processing relationships of at least two datasets is provided. For each of the datasets, a map-reduce subsystem is provided such that the data of that dataset is mapped to corresponding intermediate data for that dataset. The intermediate data for that dataset is reduced to a set of reduced intermediate data for that dataset. Data corresponding to the sets of reduced intermediate data are merged, in accordance with a merge condition. In some examples, data being merged may include the output of one or more other mergers. That is, generally, merge functions may be flexibly placed among various map-reduce subsystems and, as such, the basic map-reduce architecture may be advantageously modified to process multiple relational datasets using, for example, clusters of computing devices.

    摘要翻译: 提供了一种处理至少两个数据集的关系的方法。 对于每个数据集,提供了一个map-reduce子系统,以便将该数据集的数据映射到该数据集的相应中间数据。 该数据集的中间数据被减少为该数据集的一组减少的中间数据。 根据合并条件合并与缩减的中间数据集相对应的数据。 在一些示例中,合并的数据可以包括一个或多个其他合并的输出。 也就是说,通常,合并功能可以灵活地放置在各种map-reduce子系统之间,并且因此,可以有利地修改基本的map-reduce架构以使用例如计算设备的集群来处理多个关系数据集。

    Map-reduce with merge to process multiple relational datasets
    4.
    发明授权
    Map-reduce with merge to process multiple relational datasets 有权
    通过合并映射减少来处理多个关系数据集

    公开(公告)号:US07523123B2

    公开(公告)日:2009-04-21

    申请号:US11560523

    申请日:2006-11-16

    IPC分类号: G06F17/00

    摘要: A method of processing relationships of at least two datasets is provided. For each of the datasets, a map-reduce subsystem is provided such that the data of that dataset is mapped to corresponding intermediate data for that dataset. The intermediate data for that dataset is reduced to a set of reduced intermediate data for that dataset. Data corresponding to the sets of reduced intermediate data are merged, in accordance with a merge condition. In some examples, data being merged may include the output of one or more other mergers. That is, generally, merge functions may be flexibly placed among various map-reduce subsystems and, as such, the basic map-reduce architecture may be advantageously modified to process multiple relational datasets using, for example, clusters of computing devices.

    摘要翻译: 提供了一种处理至少两个数据集的关系的方法。 对于每个数据集,提供了一个map-reduce子系统,以便将该数据集的数据映射到该数据集的相应中间数据。 该数据集的中间数据被减少为该数据集的一组减少的中间数据。 根据合并条件合并与缩减的中间数据集相对应的数据。 在一些示例中,合并的数据可以包括一个或多个其他合并的输出。 也就是说,通常,合并功能可以灵活地放置在各种map-reduce子系统之间,并且因此,可以有利地修改基本的map-reduce架构以使用例如计算设备的集群来处理多个关系数据集。

    MAPREDUCE FOR DISTRIBUTED DATABASE PROCESSING
    5.
    发明申请
    MAPREDUCE FOR DISTRIBUTED DATABASE PROCESSING 有权
    MAPREDUCE用于分布式数据库处理

    公开(公告)号:US20080086442A1

    公开(公告)日:2008-04-10

    申请号:US11539090

    申请日:2006-10-05

    IPC分类号: G06F17/30 G06F7/00

    CPC分类号: G06F17/30584 Y10S707/968

    摘要: An input data set is treated as a plurality of grouped sets of key/value pairs, which enhances the utility of the MapReduce programming methodology. By utilizing such a grouping, map processing can be carried out independently on two or more related but possibly heterogeneous datasets (e.g., related by being characterized by a common primary key). The intermediate results of the map processing (key/value pairs) for a particular key can be processed together in a single reduce function by applying a different iterator to intermediate values for each group. Different iterators can be arranged inside reduce functions in ways however desired.

    摘要翻译: 输入数据集被视为多个分组的键/值对集合,这增强了MapReduce编程方法的实用性。 通过利用这样的分组,可以在两个或更多个相关但可能异质的数据集上独立地执行地图处理(例如,通过由公共主键表征)相关联。 通过将不同的迭代器应用于每个组的中间值,可以在单个减少函数中一起处理特定密钥的映射处理(密钥/值对)的中间结果。 减少功能内的不同迭代器可以以所需的方式排列。

    Light-emitting device
    6.
    发明授权
    Light-emitting device 有权
    发光装置

    公开(公告)号:US08362501B2

    公开(公告)日:2013-01-29

    申请号:US12769744

    申请日:2010-04-29

    IPC分类号: H01L33/22

    CPC分类号: H01L33/40 H01L2933/0091

    摘要: The application illustrates a light-emitting device including a contact layer and a current spreading layer on the contact layer. A part of the contact layer is a rough structure and a part of the contact layer is a flat structure. A part of the current spreading layer is a rough structure and a part of the current spreading layer is a flat structure. The rough region of the contact layer and the rough region of the current spreading layer are substantially overlapped.

    摘要翻译: 该应用示出了在接触层上包括接触层和电流扩散层的发光器件。 接触层的一部分是粗糙结构,并且接触层的一部分是平坦结构。 电流扩散层的一部分是粗糙结构,并且电流扩展层的一部分是平坦结构。 接触层的粗糙区域和电流扩散层的粗糙区域基本上重叠。

    LIGHT EMITTING DEVICE WITH QCSE-REVERSED AND QCSE-FREE MULTI QUANTUM WELL STRUCTURE
    7.
    发明申请
    LIGHT EMITTING DEVICE WITH QCSE-REVERSED AND QCSE-FREE MULTI QUANTUM WELL STRUCTURE 审中-公开
    具有QCSE反射和无QCSE的多量子结构的发光器件

    公开(公告)号:US20130320296A1

    公开(公告)日:2013-12-05

    申请号:US13488764

    申请日:2012-06-05

    IPC分类号: H01L33/04

    CPC分类号: H01L33/06 H01L33/32

    摘要: A light-emitting device comprises a semiconductor stacked structure, the semiconductor stacked structure comprising a p-type semiconductor layer, a n-type semiconductor layer and an multiple quantum well structure between the p-type semiconductor layer and the n-type semiconductor layer, wherein the multiple quantum well structure comprises a first multiple quantum well structure near the n-type semiconductor layer and a second multiple quantum well structure near the p-type semiconductor layer, wherein the first multiple quantum well structure has positive interface bound charge and the second multiple quantum well structure has zero interface bound charge.

    摘要翻译: 发光器件包括半导体堆叠结构,在p型半导体层和n型半导体层之间的半导体层叠结构包括p型半导体层,n型半导体层和多量子阱结构, 其中所述多量子阱结构包括靠近所述n型半导体层的第一多量子阱结构和在所述p型半导体层附近的第二多量子阱结构,其中所述第一多量子阱结构具有正界面结合的电荷, 多量子阱结构具有零界面界限电荷。

    Identifying influential users of a social networking service
    9.
    发明授权
    Identifying influential users of a social networking service 有权
    识别社交网络服务的有影响力的用户

    公开(公告)号:US09218630B2

    公开(公告)日:2015-12-22

    申请号:US13427584

    申请日:2012-03-22

    摘要: Techniques for identifying influential users of a social networking service are provided. Influential users may be identified via an algorithm in which an influence score is assigned to each user based at least in part on other members of the community users having taken an affirmative step with respect to the user's communications. Iterative processing may be performed, with each user's influence score being determined by contributions from other users, and each contribution being determined by the contributor's influence score as of a prior iteration. A map-reduce framework may be employed, with data representing the community being partitioned into a plurality of discrete shards, a map process corresponding to each shard calculating an influence score for users represented in the shard, and reduce processes ranking users according to influence score across all shards.

    摘要翻译: 提供了用于识别社交网络服务的有影响力用户的技术。 可以通过至少部分地基于对用户的通信采取肯定步骤的社区用户的其他成员的算法来识别影响用户,其中影响分数被分配给每个用户。 可以执行迭代处理,每个用户的影响分数由来自其他用户的贡献确定,并且每个贡献由先前迭代中的贡献者的影响分数确定。 可以采用地图缩减框架,其中表示社区的数据被划分成多个离散碎片,对应于每个碎片的映射处理计算分片中表示的用户的影响分数,并且减少根据影响分数对用户进行排名的过程 跨越所有碎片

    Multi-center canopy clustering
    10.
    发明授权
    Multi-center canopy clustering 有权
    多中心冠层聚类

    公开(公告)号:US08886649B2

    公开(公告)日:2014-11-11

    申请号:US13423286

    申请日:2012-03-19

    IPC分类号: G06F7/00 G06F17/30

    CPC分类号: G06F17/30598 G06F17/30011

    摘要: A canopy clustering process merges at least one set of multiple single-center canopies together into a merged multi-center canopy. Multi-center canopies, as well as the single-center canopies, can then be used to partition data objects in a dataset. The multi-center canopies allow a canopy assignment condition constraint to be relaxed without risk of leaving any data objects in a dataset outside of all canopies. Approximate distance calculations can be used as similarity metrics to define and merge canopies and to assign data objects to canopies. In one implementation, a distance between a data object and a canopy is represented as the minimum of the distances between the data object and each center of a canopy (whether merged or unmerged), and the distance between two canopies is represented as the minimum of the distances for each pairing of the center(s) in one canopy and the center(s) in the other canopy.

    摘要翻译: 冠层聚类过程将至少一组多个单中心檐篷合并成合并的多中心冠层。 多中心檐篷以及单中心檐篷可用于对数据集中的数据对象进行分区。 多中心檐篷允许放宽冠层分配条件约束,而不会在所有檐篷之外的数据集中留下任何数据对象的风险。 近似距离计算可以用作相似性度量来定义和合并檐篷,并将数据对象分配给檐篷。 在一个实现中,数据对象和冠层之间的距离被表示为数据对象和冠层的每个中心之间的距离的最小值(无论是合并还是未合并),并且两个檐篷之间的距离被表示为 一个冠层中心的每个配对的距离和另一个冠层中的一个或多个中心。