Abstract:
As conventional heat exchange modules, adsorptive agents of an inorganic type such as silica gel, zeolite, active alumina, active carbon and molecular sieve have been used. While these adsorptive agents have characteristics of high moisture absorptive ability and easy handling, they have problems of durability, regenerating temperature and generation of bacteria or fungi. An object of the present invention is to solve these problems which are noted in the inorganic adsorptive agents and to provide a heat exchanger module of a energy conservation type having a high heat exchange efficiency and a method for the manufacture thereof. The present invention is a heat exchange module of a sorptive type, characterized in that, a moisture absorptive layer in which a sorptive agent of an organic polymer type comprising organic polymer having hydrophilic polar group and cross-linking structure in a molecule is an essential component, saturated moisture absorbing rates at 20° C. and 65% RH and 90% RH are not less than 20% by weight and not less than 40% by weight, respectively and the difference in the saturated moisture absorbing rates under such a condition is not less than 20% by weight is formed on a metal surface having excellent heat conductivity.
Abstract:
The present invention provides fiber and a fiber structure having a high flame-retarding property and high moisture-absorptive property which do not generate noxious gases such as hydrogen halide gas upon burning, do not elute heavy metal compounds and phosphorus compounds therefrom even when reclaimed upon discarding including a burning treatment and have an excellent processing property. The present invention discloses a highly flame-retarding and moisture-absorptive fiber, characterized in that, it comprises an organic polymer having a cross-linking structure and a salt-type carboxyl group in which at least a part of such a salt-type carboxyl group is a magnesium salt type and a saturated moisture absorption rate at 20° C. and 65% relative humidity and a limiting oxygen index are not less than 35% by weight and not less than 35, respectively, and a flame-retarding fiber structure wherein the highly flame-retarding and moisture-absorptive fiber is used in at least a part of the structure.
Abstract:
To provide moisture absorptive and desorptive ultrafine particles having high moisture absorptive and moisture desorptive properties and particularly having an excellent moisture absorptive rate and also a product using said ultrafine particles. Moisture absorptive and desorptive ultrafine particles, characterized in that, the said particles consist of a cross-linked polymer containing 1.0 to 10.0 meq/g of a salt-type carboxyl group as a polar group where an average primary particle size is not more than 0.2 μm and saturated moisture absorptive ratios at 65% RH and 90% RH at 20° C. are not less than 20% by weight and not less than 40% by weight, respectively.
Abstract:
As conventional heat exchange modules, adsorptive agents of an inorganic type such as silica gel, zeolite, active alumina, active carbon and molecular sieve have been used. While these adsorptive agents have characteristics of high moisture absorptive ability and easy handling, they have problems of durability, regenerating temperature and generation of bacteria or fungi. An object of the present invention is to solve these problems which are noted in the inorganic adsorptive agents and to provide a heat exchanger module of a energy conservation type having a high heat exchange efficiency and a method for the manufacture thereof. The present invention is a heat exchange module of a sorptive type, characterized in that, a moisture absorptive layer in which a sorptive agent of an organic polymer type comprising organic polymer having hydrophilic polar group and cross-linking structure in a molecule is an essential component, saturated moisture absorbing rates at 20° C. and 65% RH and 90% RH are not less than 20% by weight and not less than 40% by weight, respectively and the difference in the saturated moisture absorbing rates under such a condition is not less than 20% by weight is formed on a metal surface having excellent heat conductivity.
Abstract:
Disclosed herein is a moisture-absorbing and desorbing polymer, characterized in that, the said polymer is an organic high-molecular substance containing 1.0-8.0 meq/g of carboxyl group of a potassium type and having a cross-linking structure.
Abstract:
There is disclosed a porous moisture-absorbing and desorbing polymer, characterized in that, said polymer is an organic polymer containing 2.0-12.0 meq/g of carboxyl-groups of a salt type, having a cross-linking structure and having macropores of not less than 1 m.sup.2 /g of specific surface area and 0.005-1.0 .mu.m of average pore size.
Abstract:
Disclosed are a hot-melting acrylonitrile (AN) polymer composition comprising a non-volatile component modified from AN alone or a AN monomer composition through chemical reaction, an AN polymer and water, a method for producing the composition, and a method for producing a shaped article of AN polymer by melting the composition under heat followed by shaping the melt. The composition and the shaped article do not contain toxic AN and AN monomer mixture.
Abstract:
Disclosed herein is fine inorganic particles-containing fiber which is characterized in that the fiber contains fine inorganic particles with an average particle size of not larger than 10 .mu.m and the fiber-forming polymer contains not less than 0.01 milliequivalent/gram of any of the polar groups consisting of sulfonic acid group, carboxyl group and phosphoric acid group.
Abstract:
To provide moisture absorptive and desorptive ultrafine particles having high moisture absorptive and moisture desorptive properties and particularly having an excellent moisture absorptive rate and also a product using said ultrafine particles. Moisture absorptive and desorptive ultrafine particles, characterized in that, the said particles consist of a cross-linked polymer containing 1.0 to 10.0 meq/g of a salt-type carboxyl group as a polar group where an average primary particle size is not more than 0.2 μm and saturated moisture absorptive ratios at 65% RH and 90% RH at 20° C. are not less than 20% by weight and not less than 40% by weight, respectively.
Abstract:
Moisture absorptive and desorptive paper having both high moisture absorptive and desorptive properties and high dimensional stability is provided. Moisture absorptive and desorptive paper comprising organic fine particles having cross-linking structure and 1 to 10 mmol/g of acidic group where not less than 1 mmol/g of metal ion of at least one kind of metal selected from the group consisting of Li, Na, K, Mg and Ca is bonded to said acidic group, inorganic fiber and pulp-shaped fiber. By the basic constitution as above, on one hand the moisture absorptive and desorptive properties inherent to the organic fine particles are efficiently utilized by suppressing the use of binder as much as possible, and on the other hand deformation or thermal shrinking of the paper due to swelling in water at the time of absorption etc. is able to be suppressed.