摘要:
Disclosed is a culture sheet which enables technology in which three-dimensional tissues with uniform diameter are formed without applying chemicals to the surface of a culture substrate. A plurality of holes are formed on the culture sheet of the substrate, and nanopillars capable of controlling the adhesiveness or migration of a cell are formed on a culture surface that serves as the bottom surface of each of the holes. The culture surface of each of the holes having a structure in which a partition wall is provided, wherein, by forming the internal nanopillars in the vicinity of the center of each of the holes, the interaction of the disseminated cells can be limited to uniform the size of the three-dimensional structures of the cells to be formed.
摘要:
Provided are a technique for easily forming a spheroid by three-dimensionally culturing hepatocytes, and a technique for forming a spheroid having a higher expression level of a transporter MRP2 playing a role of biliary excretion than that of a conventional method. In order to solve the above-described problems, the present inventors have found out a condition under which hepatocytes easily form the spheroid on a nanopillar sheet. More specifically, this is related to a concentration of Type I collagen coated onto the NP sheet. Also, they have found out a condition under which an expression level of a gene related to the excretion of the formed spheroid is improved. More specifically, after the spheroid is previously formed, a biological matrix is overlayered thereon.
摘要:
Provided is a culture sheet which enables a technique for forming a three-dimensional tissue having uniform diameter without applying any chemical on the surface of a culture substrate. On the culture sheet (150) of the culture substrate, a plurality of holes (152) are formed and nanopillars (153), which are capable of controlling the adhesiveness and migration ability of cells, are formed on the bottom surface of each hole (152), said bottom face serving as a culture surface. The culture surface of each hole (151) is provided with a partition wall (152) and the internal nanopillars (153) are formed in the vicinity of the center of the hole (151). Owing to this configuration, the interaction among the disseminated cells can be restricted so that uniformly sized three-dimensional structures of the cells can be formed.
摘要:
Disclosed is a culture sheet which enables technology in which three-dimensional tissues with uniform diameter are formed without applying chemicals to the surface of a culture substrate. A plurality of holes are formed on the culture sheet of the substrate, and nanopillars capable of controlling the adhesiveness or migration of a cell are formed on a culture surface that serves as the bottom surface of each of the holes. The culture surface of each of the holes having a structure in which a partition wall is provided, wherein, by forming the internal nanopillars in the vicinity of the center of each of the holes, the interaction of the disseminated cells can be limited to uniform the size of the three-dimensional structures of the cells to be formed.
摘要:
An operating efficiency of an observer is considerably restricted since it is not known at which position a culturing cell is disposed among a great number of pieces of holes of a culturing sheet. The culturing sheet is configured by a partitioning wall, a hole isolated by the partitioning wall, a local culturing region formed with plural local culturing region pillars a height of which is lower than that of the partitioning wall at a portion of a bottom face, and identification mark pillars formed at an identification mark region which differs from the culturing region at the bottom face of the hole. An identification mark is prevented from being unable to be optically recognized by adhering a spheroid to the identification mark region by making a diameter and a height of the identification mark pillar smaller than a diameter and a height of the local culturing pillar.
摘要:
Provided are a technique for easily forming a spheroid by three-dimensionally culturing hepatocytes, and a technique for forming a spheroid having a higher expression level of a transporter MRP2 playing a role of biliary excretion than that of a conventional method. In order to solve the above-described problems, the present inventors have found out a condition under which hepatocytes easily form the spheroid on a nanopillar sheet. More specifically, this is related to a concentration of Type I collagen coated onto the NP sheet. Also, they have found out a condition under which an expression level of a gene related to the excretion of the formed spheroid is improved. More specifically, after the spheroid is previously formed, a biological matrix is overlayered thereon.
摘要:
In a process for producing tubular shaped fibrous articles of small diameter by heating and cooling a fibrous bundle containing at least 20 weight % of hot-melt-adhesive composite fibers, the improvements comprise using a shaping apparatus including an injecting chamber, an injecting hole formed in the wall of the chamber, a fibrous bundle outlet provided with a nozzle of a desired shape in cross-section, a cylindrical pipe for introducing the fibrous bundle, which has a cross-sectional area larger than that of the outlet, is located at a position opposite to the outlet and projects toward the outlet and terminates in the injecting chamber, and a core pipe which is open at its base on the outside of the injecting chamber, has its one end inserted through the cylindrical pipe and extending into the nozzle through the injecting chamber, and having a vent in its portion exposed within the injecting chamber, and passing the fibrous bundle through the cylindrical pipe to the outlet, while injecting a hot compressed gas through the injecting hole, thereby to heat and shape the fibrous bundle to and at its hot-melt-adhesive temperature.
摘要:
A method for producing a hollow-cylindrically shaped fibrous article stabilized by hot adhesion and an apparatus suitable to produce the same are provided. Said method comprises passing a web of gathered fiber layer carried on a conveyer belt through a heating zone, heating said web in such a way that a lower-melting component of composite fiber contained in the lower part of said web contacting the conveyer belt is not in the molten state and a lower-melting component contained in the upper part of said web is in the molten state, while separating said web from the conveyer belt, winding up said web on a take-up rod or tube in such a way that the upper surface thereof occupies the inner side of the winding, while heating the web further, cooling the wound up article and drawing out the take-up rod or tube from the shaped product.The production method of the present invention is simple and does not require complicated apparatus and the resultant product is useful for filtration.
摘要:
Disclosed are a fluorinating agent represented by the general formula (1): wherein R1 to R4 are a substituted or unsubstituted, saturated or unsaturated alkyl group or a substituted or unsubstituted aryl group, and can be the same or different; R1 and R2 or R3 and R4 can bond to form a ring including a nitrogen atom or a nitrogen atom and other hetero atoms; or R1 and R3 can bond to form a ring including a nitrogen atom or a nitrogen atom and other hetero atoms, for example: a preparation process of the fluorinating agent and a process for preparing fluorine compounds by reacting various compounds with the fluorinating agent. The invention has also disclosed that the fluorinating agent is very effective for fluorinating oxygen containing functional compounds.
摘要:
The invention has disclosed a trifluoroacetoxylation agent and a preparation process of the agent, which is safe and ease to handle, very useful in industry, and represented by the formula (1); wherein R1 to R4 are a substituted or unsubstituted, saturated or unsaturated alkyl group or a substituted or unsubstituted aryl group and can be the same or different, R1 and R2 or R3 and R4 can bond to form a ring containing a nitrogen atom or a nitrogen atom and other hetero atoms, and R1 and R3 can bond to form a ring containing a nitrogen atom or a nitrogen atom and other hetero atoms.