摘要:
The present invention provides: a carbon nanohorn composite including a carbon nanohorn, a substance encapsulated in the carbon nanohorn, and a polyamine adsorbed by chemical reaction firmly to a surface functional group present on the opening part on the surface of the carbon nanohorn, wherein the release amount and release rate of the encapsulated substance can be controlled using the difference in size, substituent or three-dimensional structure of the polyamine, which is used as a plug; a method of controlling the release of the encapsulated substance; and a process for producing the carbon nanohorn composite. The release amount and release rate of the substance encapsulated in the carbon nanohorn composite is controlled by selecting a polyamine molecule, which plugs the opening part formed in the carbon nanohorn by oxidation, by its size, substituent or three-dimensional structure.
摘要:
The present invention provides: a carbon nanohorn composite including a carbon nanohorn, a substance encapsulated in the carbon nanohorn, and a polyamine adsorbed by chemical reaction firmly to a surface functional group present on the opening part on the surface of the carbon nanohorn, wherein the release amount and release rate of the encapsulated substance can be controlled using the difference in size, substituent or three-dimensional structure of the polyamine, which is used as a plug; a method of controlling the release of the encapsulated substance; and a process for producing the carbon nanohorn composite. The release amount and release rate of the substance encapsulated in the carbon nanohorn composite is controlled by selecting a polyamine molecule, which plugs the opening part formed in the carbon nanohorn by oxidation, by its size, substituent or three-dimensional structure.
摘要:
A cap of polyamine molecules is provided on an aperture portion of carbon nanohorns having apertures formed by oxidation. The polyamine cap opens and closes according to the pH of the ambient environment, thereby controlling release of an encapsulation substance.
摘要:
A nanocarbon aggregate including a graphite aggregate including a graphene sheet having a petal shape and a nanohorn. The petal-shaped graphite aggregate achieves a reduction in the particulate size and a higher dispersibility by allowing the edge of the petal shape to locally absorb a metal, a metal complex and a metal oxide. The nanocarbon aggregate is used for a catalyst support.
摘要:
A substance-encapsulating carbon nanohorn aggregate which has improved chemical stability by isolating the encapsulated substance from outside and which is useful as a targeting material which can be led from the outside of the body or as a contrast medium by holding the encapsulated substance in an aggregated form, and a process for producing the same are provided. The substance-encapsulating carbon nanohorn aggregate is characterized in that the encapsulated substance is aggregated in a central part of the carbon nanohorn aggregate or a neighborhood thereof with being isolated from outside. The process includes aggregating a substance to be encapsulated in a central part or a neighborhood thereof by a heat treatment.
摘要:
A substance-encapsulating carbon nanohorn aggregate which has improved chemical stability by isolating the encapsulated substance from outside and which is useful as a targeting material which can be led from the outside of the body or as a contrast medium by holding the encapsulated substance in an aggregated form, and a process for producing the same are provided. The substance-encapsulating carbon nanohorn aggregate is characterized in that the encapsulated substance is aggregated in a central part of the carbon nanohorn aggregate or a neighborhood thereof with being isolated from outside. The process includes aggregating a substance to be encapsulated in a central part or a neighborhood thereof by a heat treatment.
摘要:
An object of the present invention is to provide a nanotube-nanohorn complex having an aspect ratio higher than that of a conventional one, also having high dispersibility, and being capable of growing carbon nanotubes with controlled diameter. A nanotube-nanohorn complex according to the present invention comprises carbon nanohorn and catalyst fine particles supported within the carbon nanohorn. The carbon nanohorn comprise an aperture formed therein. Each of the catalyst fine particles is fitted and fixed in the aperture in a state in which part of the catalyst fine particle is exposed to the exterior of the carbon nanohorn. Carbon nanotubes are grown from the catalyst fine particles.
摘要:
A nanocarbon aggregate including a graphite aggregate including a graphene sheet having a petal shape and a nanohorn. The petal-shaped graphite aggregate achieves a reduction in the particulate size and a higher dispersibility by allowing the edge of the petal shape to locally absorb a metal, a metal complex and a metal oxide. The nanocarbon aggregate is used for a catalyst support.
摘要:
A carbon nanohorn (CNH) is oxidized to make an opening in the side of the CNH. A substance to be included, e.g., a metal, is introduced through the opening. The inclusion substance is moved to a tip part of the carbon nanohorn through heat treatment in vacuum or an inert gas. The CNH is further heat treated in an atmosphere containing oxygen in a low concentration to remove the carbon layer in the tip through catalysis of the inclusion substance. This exposes the inclusion substance. If the inclusion substance is a metal which is not moved to a tip part by the heat treatment in vacuum or an inert gas, the carbon part surrounding the fine catalyst particle is specifically burned by a heat treatment in an low oxygen concentration atmosphere, while utilizing the catalysis. Thus, the fine catalyst particle is fixed to the tip part of the CNH.
摘要:
An object of the present invention is to provide a nanotube-nanohorn complex having a high aspect ratio, also having high dispersibility, having controlled diameter, and having high durability at a low cost. According to the present invention, a carbon target containing a catalyst is evaporated with a laser ablation method to synthesize a structure including both of a carbon nanohorn aggregate and a carbon nanotube.