Abstract:
A transparent diffusive OLED substrate includes the following successive elements or layers: a transparent flat substrate made of mineral glass having a refractive index of between 1.45 and 1.65, a rough low index layer including mineral particles, the mineral particles being bonded to one side of the substrate by means of a low index enamel, the mineral particles near, at or protruding from the enamel's surface creating a surface roughness characterized by an arithmetical mean deviation Ra comprised between 0.15 and 3 μm, the mineral particles and enamel both having a refractive index of between 1.45 and 1.65; a high index planarization layer made of an enamel having a refractive index comprised between 1.8 and 2.1 covering the rough low index layer (b).
Abstract:
A method for preparing a laminate substrate for a light emitting device includes providing a glass substrate having a refraction index, at 550 nm, of between 1.45 and 1.65, coating a glass frit having a refractive index, at 550 nm, of at least 1.7 onto the glass substrate, firing the resulting frit coated glass substrate at a temperature above the Littleton temperature of the glass frit thereby forming a first high index enamel layer, coating a metal oxide layer onto the first high index enamel layer, and firing the resulting coated glass substrate at a temperature above the Littleton temperature of the glass frit, thereby making react the metal oxide with the underlying first high index enamel layer and forming a second high index enamel layer with a plurality of spherical voids embedded in the upper section of the second high index enamel layer near the interface with air.
Abstract:
A layered structure suitable as a support for an organic light emitting device (OLED), includes a light-transmissive glass substrate, a diffusive internal extraction layer (IEL) with an outer layer made of a glass containing at least 30 weight % of Bi2O3, formed on one side of the light-transmissive glass substrate, and an acid-resistant barrier layer formed on the IEL. The acid-resistant barrier layer has a bilayer structure made of an ALD-deposited metal oxide layer, the metal oxide being selected from the group consisting of aluminum oxide (Al2O3), titanium oxide (TiO2), zirconium oxide (ZrO2) and hafnium oxide (HfO2), in contact with the IEL, and a sputter-deposited SiOxNy layer in contact with the ALD-deposited metal oxide layer.
Abstract:
A transparent diffusive OLED substrate includes the following successive elements or layers: (a) a transparent flat substrate made of mineral glass having a refractive index n1 of between 1.48 and 1.58, (b) a monolayer of mineral particles attached to one side of the substrate by means of a low index mineral binder having a refractive index n2 of between 1.45 and 1.61, and (c) a high index layer made of an enamel having a refractive index n4 between 1.82 and 2.10 covering the monolayer of mineral particles, the mineral particles having a refractive index n3 between n2+0.08 and n4−0.08 and protruding from the low index mineral binder so as to be directly in contact with the high index layer, thereby forming a first diffusive interface between the mineral particles and the low index binder, and a second diffusive interface between the mineral particles and the high index layer.
Abstract:
A method for preparing a laminate substrate for a light emitting device, includes (a) providing a glass substrate having a refraction index of between 1.45 and 1.65, (b) coating a metal oxide layer onto one side of the glass substrate, (c) coating a glass frit having a refractive index of at least 1.7 onto the metal oxide layer, the glass frit including at least 30 weight % of Bi2O3, (d) firing the thus coated glass substrate at a temperature comprised between 530° C. and 620° C. thereby making react the metal oxide with the melting glass frit and forming a high index enamel layer with a plurality of spherical voids embedded in the lower section of the enamel layer near the interface with the glass substrate.