ELECTROCATALYST FOR ELECTROCHEMICAL CONVERSION OF CARBON DIOXIDE
    1.
    发明申请
    ELECTROCATALYST FOR ELECTROCHEMICAL CONVERSION OF CARBON DIOXIDE 审中-公开
    二氧化碳电化学转化用电解质

    公开(公告)号:US20130256123A1

    公开(公告)日:2013-10-03

    申请号:US13437766

    申请日:2012-04-02

    摘要: An electrocatalyst for the electrochemical conversion of carbon dioxide to hydrocarbons is provided. The electrocatalyst for the electrochemical conversion of carbon dioxide includes copper material supported on carbon nanotubes. The copper material may be pure copper, copper and ruthenium, copper and iron, or copper and palladium supported on the carbon nanotubes. The electrocatalyst is prepared by dissolving copper nitrate trihydrate in deionized water to form a salt solution. Carbon nanotubes are then added to the salt solution to form a suspension, which is then heated. A urea solution is added to the suspension to form the electrocatalyst in solution. The electrocatalyst is then removed from the solution. In addition to dissolving the copper nitrate trihydrate in the deionized water, either iron nitrate monohydrate, ruthenium chloride or palladium chloride may also be dissolved in the deionized water to form the salt solution.

    摘要翻译: 提供了用于将二氧化碳电化学转化成烃的电催化剂。 用于二氧化碳的电化学转化的电催化剂包括负载在碳纳米管上的铜材料。 铜材料可以是纯铜,铜和钌,铜和铁,或者负载在碳纳米管上的铜和钯。 通过将硝酸铜三水合物溶解在去离子水中以形成盐溶液制备电催化剂。 然后将碳纳米管加入到盐溶液中以形成悬浮液,然后将其加热。 向悬浮液中加入尿素溶液以在溶液中形成电催化剂。 然后从溶液中除去电催化剂。 除了将硝酸铜三水合物溶解在去离子水中外,还可以将硝酸铁一水合物,氯化钌或氯化钯溶解在去离子水中以形成盐溶液。

    ELECTROCATALYST FOR ELECTROCHEMICAL CONVERSION OF CARBON DIOXIDE
    2.
    发明申请
    ELECTROCATALYST FOR ELECTROCHEMICAL CONVERSION OF CARBON DIOXIDE 审中-公开
    二氧化碳电化学转化用电解质

    公开(公告)号:US20130256124A1

    公开(公告)日:2013-10-03

    申请号:US13437819

    申请日:2012-04-02

    摘要: The electrocatalyst for the electrochemical conversion of carbon dioxide includes a copper material supported on titania nanotubes. The copper material may be pure copper, copper and ruthenium, or copper and iron supported on the titania nanotubes. The electrocatalyst is prepared by first dissolving copper nitrate trihydrate in deionized water to form a salt solution. Titania nanotubes are then added to the salt solution to form a suspension, which is then heated. A urea solution is added to the suspension to form the electrocatalyst in solution. The electrocatalyst is then removed from the solution. In addition to dissolving the copper nitrate trihydrate in the volume of deionized water, either iron nitrate to monohydrate or ruthenium chloride may also be dissolved in the deionized water to form the salt solution.

    摘要翻译: 用于二氧化碳的电化学转化的电催化剂包括负载在二氧化钛纳米管上的铜材料。 铜材料可以是纯铜,铜和钌,或者负载在二氧化钛纳米管上的铜和铁。 通过首先将硝酸铜三水合物溶解在去离子水中以形成盐溶液来制备电催化剂。 然后将二氧化钛纳米管加入到盐溶液中以形成悬浮液,然后将其加热。 向悬浮液中加入尿素溶液以在溶液中形成电催化剂。 然后从溶液中除去电催化剂。 除了将硝酸铜三水合物溶解在去离子水的体积之外,还可以将硝酸铁与一水合物或氯化钌溶解在去离子水中以形成盐溶液。

    FUEL CELL MEMBRANE ELECTRODE ASSEMBLY
    3.
    发明申请
    FUEL CELL MEMBRANE ELECTRODE ASSEMBLY 审中-公开
    燃料电池电极组件

    公开(公告)号:US20120141907A1

    公开(公告)日:2012-06-07

    申请号:US13342919

    申请日:2012-01-03

    IPC分类号: H01M4/92 H01M8/10

    摘要: The fuel cell membrane electrode assembly includes PtRu active species supported on mesoporous carbon nitride materials for use in the anode of direct methanol fuel cells. The fuel cell membrane electrode assembly includes an anode plate, a gas diffusion layer, and a catalyst adjacent a PEM membrane. The composition of the catalyst is about 30 wt % active species and 70 wt % support materials. The nitrided PtRu on a mesoporous carbon support provides enhanced hydrogen adsorbing capacity to accelerate the rate of oxidation of methanol at the anode of a direct methanol fuel cell, resulting in greater efficiency of the fuel cell.

    摘要翻译: 燃料电池膜电极组件包括用于直接甲醇燃料电池的阳极的介孔碳氮化物材料上的PtRu活性物质。 燃料电池膜电极组件包括阳极板,气体扩散层和邻近PEM膜的催化剂。 催化剂的组成为约30重量%的活性物质和70重量%的载体材料。 介孔碳载体上的氮化PtRu提供了增强的氢吸附能力,以加速在直接甲醇燃料电池的阳极处甲醇的氧化速率,导致燃料电池的效率更高。

    METHANOL ELECTRO-OXIDATION CATALYST AND METHOD OF MAKING THE SAME
    4.
    发明申请
    METHANOL ELECTRO-OXIDATION CATALYST AND METHOD OF MAKING THE SAME 失效
    甲醇电氧化催化剂及其制备方法

    公开(公告)号:US20130172174A1

    公开(公告)日:2013-07-04

    申请号:US13342930

    申请日:2012-01-03

    IPC分类号: B01J21/18 B82Y30/00

    摘要: The active methanol electro-oxidation catalysts include nano-oxides of transition metals (i.e., iron, cobalt and nickel) and platinum-ruthenium alloy nano-particles. The nano-oxides of the transition metals are dispersed during synthesis of a support material, such as mesoporous carbon. The catalyst includes a support material formed from mesoporous carbon, a nano-oxide of a transition metal dispersed in the support material, and platinum-ruthenium alloy nano-particles supported on the nano-oxide of the transition metal, the platinum-ruthenium alloy nano-particles (in a 1:1 molar ratio) forming about 15 wt % of the methanol electro-oxidation catalyst, the transition metals forming about 15 wt % of the methanol electro-oxidation catalyst, and carbon and oxygen forming the balance of about 70 wt % of the methanol electro-oxidation catalyst.

    摘要翻译: 活性甲醇电氧化催化剂包括过渡金属(即铁,钴和镍)和铂 - 钌合金纳米颗粒的纳米氧化物。 过渡金属的纳米氧化物在合成载体材料如介孔碳期间分散。 催化剂包括由介孔碳形成的载体材料,分散在载体材料中的过渡金属的纳米氧化物和负载在过渡金属的纳米氧化物上的铂 - 钌合金纳米颗粒,铂 - 钌合金纳米 形成甲醇电氧化催化剂的约15重量%的颗粒(以1:1的摩尔比形成),形成甲醇电氧化催化剂约15重量%的过渡金属,形成余量为约70的碳和氧 wt%的甲醇电氧化催化剂。

    OXIDATIVE DEHYDROGENATION OF PROPANE
    5.
    发明申请
    OXIDATIVE DEHYDROGENATION OF PROPANE 失效
    丙烷的氧化脱氢

    公开(公告)号:US20130006030A1

    公开(公告)日:2013-01-03

    申请号:US13171116

    申请日:2011-06-28

    IPC分类号: C07C5/333 B01J23/28 C01G39/02

    摘要: The oxidative dehydrogenation of propane provides a highly selective catalyst for the oxidative dehydrogenation of propane to propylene, and a process for preparing the catalyst. The catalyst is a mixed metal oxides catalyst of the general formula MoaVbOx, where the molar ratio of molybdenum to vanadium is between 1:1 and 9:1 (a:b is between 0.5:0.5 and 0.9:0.1) and x is determined according to the oxidation state of the cations present. The catalyst is prepared by mixing the metals by sol-gel technique, heating the gel to dry the mixed oxides, further heating the dried product to induce auto-combustion, washing the product with isopropyl alcohol, and drying with a supercritical CO2 dryer. Oxidative dehydrogenation is carried out by contacting a stream of propane gas with the bulk mixed metal oxides catalyst at a temperature between 350° C. and 550° C. Propylene selectivity of 100% is reached at conversion rates between 1.9% and 4.8%.

    摘要翻译: 丙烷的氧化脱氢提供了丙烷对丙烯的氧化脱氢的高选择性催化剂,以及制备催化剂的方法。 该催化剂是通式为MoaVbOx的混合金属氧化物催化剂,其中钼与钒的摩尔比为1:1至9:1(a:b为0.5:0.5至0.9:0.1之间),x为 到存在的阳离子的氧化态。 催化剂是通过溶胶 - 凝胶技术混合金属,加热凝胶来干燥混合氧化物,进一步加热干燥产物以引发自燃,用异丙醇洗涤产物,并用超临界CO2干燥器干燥制备催化剂。 氧化脱氢是通过在350℃和550℃之间的温度下接触丙烷气体与本体混合金属氧化物催化剂进行的。丙烯选择性为100%,转化率为1.9%至4.8%。

    CATALYST FOR OXIDATIVE DEHYDROGENATION OF PROPANE TO PROPYLENE
    7.
    发明申请
    CATALYST FOR OXIDATIVE DEHYDROGENATION OF PROPANE TO PROPYLENE 失效
    丙烷氧化脱氢丙烯催化剂

    公开(公告)号:US20120083641A1

    公开(公告)日:2012-04-05

    申请号:US12897686

    申请日:2010-10-04

    IPC分类号: C07C5/333 B01J21/12

    摘要: The catalyst for oxidative dehydrogenation of propane to propylene includes vanadium and aluminum incorporated into the framework of a mesoporous support, viz., MCM-41, to form V—Al-MCM-41, and nickel impregnated onto the walls of the mesoporous support. Nickel loading is preferably in the range of 5 to 15% by weight of the catalyst. A process for the production of propylene from propane includes steps of placing the catalyst in a fixed bed reactor, introducing a flow of feedstock in a propane:oxygen:nitrogen ratio of about 6:6:88 by volume, maintaining the reactor at atmospheric pressure and in a temperature range of about 400 to 550° C., collecting the product, and separating propylene from the product. The process achieves propane conversion between about 6 to 22%, and a selectivity for propylene between about 22 and 70%, depending upon percent nickel content and temperature of the reaction.

    摘要翻译: 丙烷到丙烯的氧化脱氢催化剂包括掺入中孔载体(即MCM-41)的框架中的钒和铝,以形成V-Al-MCM-41,以及镍浸渍在介孔载体的壁上。 镍的负载量优选为催化剂重量的5至15%。 从丙烷生产丙烯的方法包括以下步骤:将催化剂置于固定床反应器中,将原料流以约6:6:88体积的丙烷:氧气:氮气比引入,保持反应器处于大气压 并在约400至550℃的温度范围内,收集产物,并从产物中分离出丙烯。 该方法根据镍含量和反应温度的百分比,实现约6至22%的丙烷转化率和约22至70%的丙烯选择性。