摘要:
An organic light emitting diode display according to an exemplary embodiment includes: a substrate; a first buffer layer on the substrate; a first semiconductor layer on the first buffer layer; a first gate insulating layer on the first semiconductor layer; a first gate electrode and a blocking layer on the first gate insulating layer; a second buffer layer on the first gate electrode; a second semiconductor layer on the second buffer layer; a second gate insulating layer on the second semiconductor layer; and a second gate electrode on the second gate insulating layer.
摘要:
An organic light emitting diode display includes a substrate, an overlap layer on the substrate, a semiconductor layer on the overlap layer, a first gate conductor on the semiconductor layer, a second gate conductor on the first gate conductor, a data conductor on the second gate conductor, a driving transistor on the overlap layer, and an organic light emitting diode connected with the driving transistor. The driving transistor includes, in the semiconductor layer, a first electrode, a second electrode, with a channel therebetween. A gate electrode of the first gate conductor overlaps the channel. The overlap layer overlaps the channel of the driving transistor and at least a portion of the first electrode. A storage line of the second gate conductor receives a driving voltage through a driving voltage line in the data conductor. The overlap layer receives a constant voltage.
摘要:
A display device includes a driving circuit that drives a pixel, and a display region including the pixel. The pixel includes a light emitting element electrically connected between a first power source and a second power source, a first transistor electrically connected between the first power source and the light emitting element to control a driving current, the first transistor including a first gate electrode electrically connected to a first node, and a second gate electrode electrically connected to a bias control line, and a switching transistor electrically connected between a data line and the first node, the switching transistor including a gate electrode electrically connected to a scan line. The driving circuit varies a control signal provided to the bias control line in a second period based on a first data signal provided to the data line during a first period.
摘要:
A display device includes: a plurality of pixels connected to gate lines and data lines; a gate driver to supply a gate signal to the gate lines; and a data driver to supply a data signal to the data lines. The gate driver includes: a first transistor including a first active layer at a first layer; and a second transistor including a second active layer at a second layer on the first layer.
摘要:
A thin film transistor according to an exemplary embodiment of the present invention includes an oxide semiconductor. A source electrode and a drain electrode face each other. The source electrode and the drain electrode are positioned at two opposite sides, respectively, of the oxide semiconductor. A low conductive region is positioned between the source electrode or the drain electrode and the oxide semiconductor. An insulating layer is positioned on the oxide semiconductor and the low conductive region. A gate electrode is positioned on the insulating layer. The insulating layer covers the oxide semiconductor and the low conductive region. A carrier concentration of the low conductive region is lower than a carrier concentration of the source electrode or the drain electrode.
摘要:
A display device includes a substrate including a display area including a plurality of pixels, a peripheral area around the display area, and a bending area disposed in the peripheral area. A plurality of transistors is disposed in each pixel; a driving voltage line is disposed in the display area and transmits a driving voltage; a driving voltage transmission line is disposed in the peripheral area and is connected to the driving voltage line; and a conductive overlap layer overlaps at least one of the plurality of transistors.
摘要:
A display device includes a semiconductor layer positioned on a substrate and including a driving transistor and a plurality of transistors; a gate conductive layer positioned on the semiconductor layer; and a data conductive layer positioned on the gate conductive layer. The driving transistor has a linear shape in which a plurality of grooves are formed.
摘要:
A display device includes: a substrate; a transistor disposed on the substrate; a first electrode connected to the transistor; an emission layer disposed on the first electrode; a second electrode disposed on the emission layer; a common voltage line connected to the second electrode; and a third electrode and a fourth electrode disposed between the common voltage line and the second electrode.
摘要:
A display may include flexible substrate, a blocking layer on the flexible substrate, a pixel on the flexible substrate and the blocking layer, and a scan line, a data line, a driving voltage line, and an initialization voltage line connected to the pixel. The pixel may include an organic light emitting diode, a switching transistor connected to the scan line, and a driving transistor to apply a current to the organic light emitting diode. The blocking layer is in an area that overlaps the switching transistor on a plane, and between the switching transistor and the flexible substrate, and receives a voltage through a contact hole that exposes the blocking layer.
摘要:
A display may include flexible substrate, a blocking layer on the flexible substrate, a pixel on the flexible substrate and the blocking layer, and a scan line, a data line, a driving voltage line, and an initialization voltage line connected to the pixel. The pixel may include an organic light emitting diode, a switching transistor connected to the scan line, and a driving transistor to apply a current to the organic light emitting diode. The blocking layer is in an area that overlaps the switching transistor on a plane, and between the switching transistor and the flexible substrate, and receives a voltage through a contact hole that exposes the blocking layer.